These are the concepts that you NEED to know and be able to DO. You learned them alliirgrade iO math.

1. Operations with Integers: Evaluate
a) $3+$
(-6)(-4) mull. first
$=3+24$
$=27$
b) $(-5)^{2}=(-5)(-5)$

sign is not included in the?
exponent is repeated
repeated multiplicet ion b/c
$3 \times 3 \times 3 \times 3$-her eire no parentheses that enclose the sign
2. Operations with Rational Numbers Evaluate $\frac{6}{5} \times \frac{2}{5} \div \frac{-4}{15}$

$$
\text { Steal }=\frac{6 \times 2}{5 \times 5} \div \frac{-4}{15}
$$

mistily
3. Evaluating Algebraic Expressions: Find the value of $5 x^{2} y+6 x y-4 y^{2}-1$ if $x=-3$ and $y=2$

$$
\begin{aligned}
& \text { Note }=\text { always sub with parantheses } \\
& =5(-3)^{2}(2)+6(-3)(2)-4(2)^{2}-1 \rightarrow \text { follow BEDMAS } \\
& =5 \cdot 9 \cdot 2-36-4 \cdot 4-1 \\
& =90-36-16-1
\end{aligned} \begin{aligned}
& \frac{\text { CALCULATOR Ti }}{5 *(-3) \wedge 2 * 2+6 *-2 * 2-4 * 2 \wedge 2-1} \\
& =37
\end{aligned}
$$

4. Graphing : Name the type of relation, the original (untransformed) function, list thancormations, then graph.
a) $y=-4 x+5 \rightarrow$ LINEAR
b) $y=2(x-3)^{2}-4$

$$
\begin{array}{ll}
=\left(5 x^{2} y\right)(2 x y)+\left(5 x^{2} y\right)\left(-3 y^{2}\right) & 1=6 x^{2}-15 x y+4 x y-10 y^{2} \\
=10 x^{2+1} y^{1+1}-15 x^{2} y^{1+2} & 1=6 x^{2}-11 x y-10 y^{2} \\
=10 x^{3} y^{2}-15 x^{2} y^{3} & 1 \\
& 1
\end{array}
$$

$$
x
$$

(1) Plot y-int
(2) from y-int always go " + "
direction as much
as your run ${ }^{(+1)}$ (3) move as much
5. Expanding and Simplifying Algebraic Expressions: Expand and simplify.

1 term
b) $(3 x+2 y)(2 x-5 y)$ FOIL

$$
\begin{aligned}
& y \text {-int }=5 \\
& \text { slope }=\frac{\text { rise }}{\text { run }}=\frac{-4}{1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (5xy) } \\
& =\left(5 x^{2} y\right)(2 x y)+\left(5 x^{2} y\right. \\
& =10 x^{2+1} y^{1+1}-15 x^{2} y \\
& =10 x^{3} y^{2}-15 x^{2} y^{3}
\end{aligned}
$$

lays opposite
(1) State \& plot vertex $V(3,-4)$
(2) Step pattern

$$
\begin{aligned}
& a \times(1,3,5, \ldots) \\
= & \frac{b}{2} \times(1,3,5) \\
= & 2,6,10
\end{aligned}
$$

(3) from vertex, go always ore right then 2 up. repeat the step again.
$\left.\right|_{\text {c) }} ^{\text {cero }} \frac{\left(x_{0}^{2} y^{3}\right)^{0}\left(6 x^{3} y^{445}\right)^{2}}{\left(3 x y^{3}\right)^{3}}$

S vertex
6. Factoring: Factor fully. difference of
a) $x^{2}-25 y^{2}$ squares

$$
\begin{aligned}
& =\left(\sqrt{x^{2}}-\sqrt{25 y^{2}}\right)\left(\sqrt{x^{2}}+\sqrt{25 y^{2}}\right) \\
& =(x-5 y)(x+5 y)
\end{aligned}
$$

b) $x^{2}-5 x-6$

UJE quadRatic formula
a) $2 x+5=9$

$$
\begin{gathered}
2 x=9-5 \\
\frac{2 x}{2}=\frac{4}{2} \\
x=2
\end{gathered}
$$

b) $x^{2}-4 x+3=0$

$(x-1)(x-3)=0 \quad 3 \quad$	M	A	N

$\begin{gathered}\mathcal{L} \\ x=1\end{gathered} \quad \underset{x-3=0}{(x-1)} \quad x=3$

$$
\therefore\{1,3\}
$$

c) $3 x^{2}-8 x=4$

$$
\begin{aligned}
& \quad 3 x^{2}-8 x-4=0 \quad M|A| N \\
& 1 a^{\alpha}=3 \quad b=-8 c=-4 \quad-12|-8| \\
& 1 \\
& x=\frac{-b \mp \sqrt{b^{2}-4 a c}}{2 a} \quad \text { Plauen } \\
& =\frac{-(-8) \mp \sqrt{(-8)^{2}-4(3)(-4)}}{2(3)} \\
& =\frac{8 \mp \sqrt{112}}{6}=\frac{8+10.6}{6}=3.1
\end{aligned}
$$

8. Quadratics - Completing the Square Find the vertex of $h=-2 t^{2}+12 t+25$ Your goal is to convert $y=a x^{2}+b x+c$ into $y=a(x-h)^{2}+k=\frac{8-106}{6}=-0.4$ We will do opposite of expanding (factoring) to have $\longrightarrow(x-h)^{2}$

$$
\begin{array}{ll}
h=-2\left(\frac{-2 t^{2}}{-2}+\frac{12 t}{-2}\right)+25 & \text { factor out "1-2" from } \\
\text { the first two terms. }
\end{array}
$$ the first two terms.

you square a binomial to get we need a term here \nearrow a P.S.T to have a perfect square trinomial.

$$
=-2\left(t^{2}-6 t+9-9\right)+25
$$

$$
\frac{-6}{2}=-3 \quad(-3)^{2}=9 \quad \frac{(a+b)^{2}}{\text { binomial }}=\frac{a^{2}+2 a b+b^{2}}{\text { P.S.T }}
$$

$$
=-2\left(t^{2}-6 t+9\right)^{-2 \cdot 9}+\frac{18}{2}+25
$$

$$
h=-2(t-3)^{2}+43
$$

9. Trigonometry: Determine the value of θ rounded to nearest degree and/or x, rounded to nearest tenth

10. For the line $3 x-5 y=10$ state:
a) the slope
b) the y-intercept

$$
\begin{aligned}
\frac{-5 y}{-5} & =\frac{-3 x}{-5}+\frac{10}{-5} \\
y & =\frac{3}{5} x-2
\end{aligned}
$$

$$
\text { a) slope is } 3 / 5
$$

$$
\text { b) } y \text { int }=-2
$$

2. Expand and Simplify $(3 x-1)(4 x+5)$

$$
\begin{aligned}
& =(3 x)(4 x)+(3 x)(5)+(-1)(4 x)+(-1)(5) \\
& =12 x^{2}+15 x-4 x-5 \\
& =12 x^{2}+11 x-5
\end{aligned}
$$

9. Factor fully.
a)

$$
\begin{aligned}
9 x^{3}-25 x & =x\left(9 x^{2}-25\right) \\
& =x(3 x-5)(3 x+5)
\end{aligned}
$$

b) $6 x^{2}+10 x+4$

$$
x=-1 \quad x \doteq-0.7
$$

10. Solve each equation using the most appropriate method. Give answers to one decimal place only where appropriate.
a)

$$
\begin{aligned}
& x^{2}+4 x-21=0 \\
& (x-3)(x+7)=0 \\
& x=3 \quad x=-7 \quad \therefore\{-7,3\}
\end{aligned}
$$

b) $(x+2)(x-3)=3(x+1)-9$

$$
\begin{gathered}
x^{2}-x-6=3 x+3-9 \\
x^{2}-x-6-3 x-3+9=0 \\
x^{2}-4 x=0 \\
x(x-4)=0 \\
x=0 \quad x=4 \quad\{0,4\}
\end{gathered}
$$

c) $0=x^{2}+4 x-1$
use quadratic formula

$$
\{-4.2,0.2\}
$$

3. Factor

$$
\begin{aligned}
& \text { a) } m^{2}-81 \rightarrow \text { D.O.S } \\
& =(m-9)(m+9)
\end{aligned}
$$

b $x^{2}-7 x-18=(x+2)(x-9)$
4. the roots of the equation:
a) $(x-7)(x+6)=0$
x-int

$$
\begin{array}{rr}
x-7=0 & x+6=0 \\
x=7 & x=-6
\end{array}
$$

\therefore Roots are $(-6,0) \&(7,0)$
OR

$$
\{-6,7\}
$$

11. Complete the square and state the voter

$$
\begin{aligned}
y & =x^{2}+2 x-25 \\
& =\left(x^{2}+2 x+1-1\right)-25 \\
& =\left(x^{2}+2 x+1\right)-1-25 \\
& =(x+1)^{2}-26
\end{aligned}
$$

$$
2 / 2=1
$$

Vertex is $(-1,-26)$
12. Evaluate. $4^{-2}+\left(\frac{3}{2}\right)^{2}-9^{0}$ call tip

$$
\begin{aligned}
& =\frac{1}{4^{2}}+\frac{9}{4}-1 \\
& =\frac{1}{16}+\frac{9.4}{4 \cdot 4}-\frac{1}{1} \cdot 16 \\
& =\frac{1+36-16}{16}=\frac{21}{16}
\end{aligned}
$$

7. Solve each system algebraically using the method indicated. Show proper form.
15. Graph $y=x^{2}$ in pencil and $y=-2(x-3)^{2}+4$ in colour. List the transformations using proper mathematical language.
16. Solve.
a) $3 x+4=-5$
d) $\frac{3}{x} \nexists \frac{7}{11}$. Cross mull.

$$
\begin{array}{ll}
3 x=-5-4 \\
3 x=-9 & \frac{33}{7}=\frac{7 x}{7} \\
x=-3 & 4.7=x
\end{array}
$$

$$
\text { e) } \begin{aligned}
& 3(x+3)=5(x+2)+1 \\
& 3 x+9=5 x+10+1 \\
& 9-11=5 x-3 x \\
& -2=2 x \\
& -1=x
\end{aligned}
$$

c) $\frac{x}{3}=\frac{4}{5}$

$$
\begin{gathered}
12 \\
\text { f) }\left(\frac{r+5}{4}+\frac{r-2}{3}=7\right) \quad \text { L.C.D is } 12 \\
12 \cdot \frac{(r+5)}{4}+12 \cdot \frac{(r-2)}{3}=7.12 \\
3(r+5)+4(r-2)=84 \\
3 r+15+4 r-8=84 \\
7 r=84-7 \\
7 r=77 \\
r=11
\end{gathered}
$$

