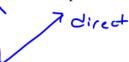
DIRECT vs. PARTIAL VARIATION

Example 1:	Example 2:	Example 3:
Stephen works at a hardware store	Popcorn pops, on average, at a rate of	Branley works in sales and earns
and earns \$9.25 for each hour he	4 kernels per second. Let P represent	commission of 2% on the merchandise
works. Let E represent his	the amount of popcorn kernels	she sells. Define your variables and
Earnings, and h represent the	popped, and s represent the number of	write an equation.
number of hours he works.	seconds.	C = 0.02 n
E = 9.25h	P = 4s	
	1	

These are the examples of <u>direct</u> <u>vociation</u>. In example 1, E varies <u>directly</u> with the number


of hours.	The graph of a direct variation relationship is a straight line through the	origin.	The equation is in
	<u>^</u>	0	

the form ____ = mx

Example 4:

E = 35h + 50

Sveta works at a local gym as a personal trainer. She earns \$50 each shift and an additional \$35 per hour of personal training. Let E represent her earnings, and h represent the number of p.t. hours.

Example 5: Matthew's bank account has \$500.

Each month he spends \$50. Let B represent his balance, and let m represent the number of months that have passed.

B= -50m+500

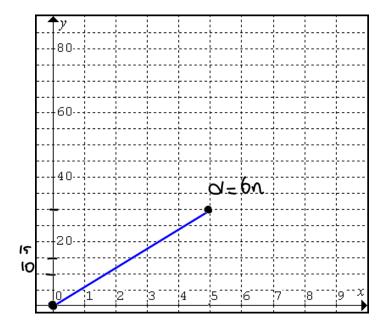
Example 6:

Josie repairs computer problems and charges a \$50 service fee plus \$30 per hour. Let F represent her total fee, and h represent the number of hours worked.

F = 30h + 50

These are the examples of portial Jariation	 . In example 5, B varies	portially with the	number
of months. The graph of a partial variation relation	ship is a straight line that 🗲	tarts from any	point on "y" axi
The equation is in the form $y = mx + b$	Pertial		by origin.
Situation		Equation	DonD

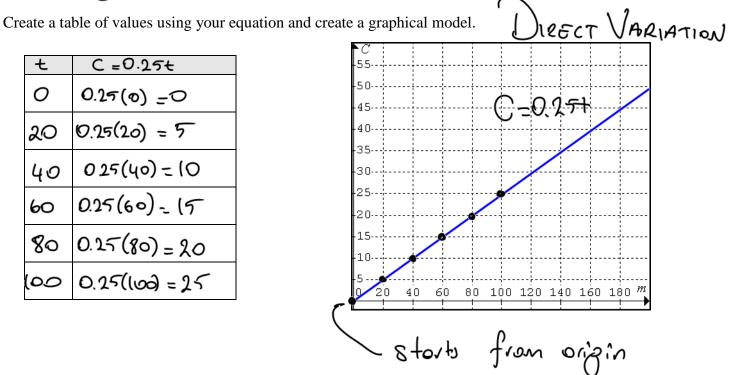
Situation	Equation	D or P
a) A cookie recipe makes 12 cookies for each egg in the recipe.	R= 12n	\mathcal{D}
b) An airplane was at an altitude of 1700m and is descending at 50m per minute.	A= -50t+1700	P
c) Michael works as a tree planter for the government. He can plant 900 trees in a day.	T= 900d	D
d) A cell phone plan is \$20 per month but excludes text messaging. Each text message costs 20 cents.	C=0.20t+20	Ð
e) Leah cuts lawns in the summer and earns \$15 for every lawn she cuts.	W= 15L	\mathcal{D}
f) A banquet hall charges \$500 for the hall rental and \$32.50 per person.	C=32.5p+500	P


DIRECT VARIATION

Example 1

The new Mazda 3 Sport has gas mileage of $^{\circ}$ 6km per litre. This can be modelled by the algebraic equation d=7.6n, where d represents the distance you can travel and n represents the number of litres you use.

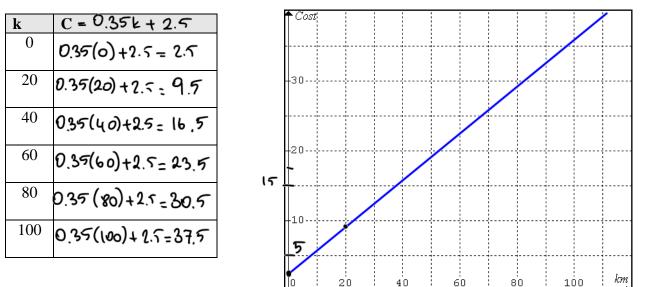
Complete the table of values for the distance per number of litres and use your table to create a graphical model of this scenario.


n	d = 6n
0	6(o) <u>-</u> 0
1	6(1) - 6
2	6(2) = 12
3	6(3)=18
4	6(4) = 2y
5	6(5)-30

Example 2

Dooko Mobile Company does not charge any monthly fees, but charges \$0.25 per minute of cell phone use. Model this scenario algebraically.

$$C = 0.25t$$

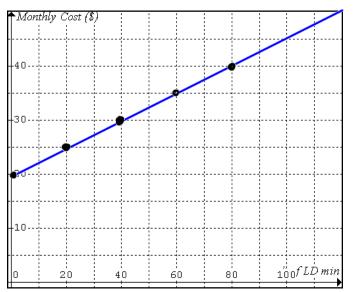

TAXI

PARTIAL VARIATION

Example 1

A taxi company charges a flat rate of \$2.50 plus 0.35/km. The cost can be found using the equation C = 0.35 + 2.5, where C represents the cost and k represents the number of kilometres.

Using the equation, complete a table of values. Using your table of values, create the graph.


Example 2

KeeDe Mobile Company charges \$20 per month and an additional \$0.25 per minute of long distance calls. Model this scenario algebraically.

$$C = 0.25t + 20$$

Create a table of values using your equation and create a graphical model.

t	C=0,25++20
0	= 0.25(0)+20=20
20	= 0.25(20) + 20 = 25
40	=0.25(40)+20=30
60	-0.25(60) + 20 - 35
80	=0.25(80)+20=40
100	-= 0.25 (100) + 27= 45

