Type 3: Mixture Problems
Ex1 A chemical supply company received an order for 1500L of 38% salt solution. To fill the order it was necessary to mix 40% salt solution with 30% salt solution. How many litres of each should be mixed?

Amount
Salt
x
40% of x

30 \% of y\end{array}\right|=$$
\begin{array}{c}1500 \\
38 \%\end{array}
$$\right.\)
(1) $x+y=1500$
(2) $0.40 x+0.30 y=0.38(1500)$
${ }^{7} \mathrm{Act}_{3}$
$\therefore 1200 \mathrm{~L}$ of 40% and 300 L of 30% should be mixed.
Act

$$
\begin{aligned}
& 2 \\
&(2) 0.40 x+0.30 y=570 \\
& 0.40(1500-y)+0.30 y=570 \\
& 600-0.4 y+0.3 y=570^{-600} \\
&-0.1 y=\frac{-30}{-0.1} \\
&-0.1=300
\end{aligned}
$$

Type 4: Distance, Speed, Time Problems
Ex2 Batman drove 230km to Catwoman's house and it took him 4 hours. Part of the time, he was on the highway in Arkham City where the speed limit is $110 \mathrm{~km} / \mathrm{h}$. The rest of the time he had to drive on the smaller roads where the speed limit is $40 \mathrm{~km} / \mathrm{h}$ so that Joker's spies would not notice him. Suppose that Batman drove exactly at the speed limit the whole trip, how much time did Batman spend on each type of the road?
Let " h " be the amount of tire z ravelled on highway
" "s" " " " " " "
Batman HIGHWAY , SIOEROADS Catwoman
distance $=$ speed \times time: speed \times time \quad Total time travelled $\Rightarrow h+s=4$

$$
\begin{array}{ll}
=110 \times h & 1=40 \times s \\
=110 \mathrm{~h} & 1=40 \mathrm{~s}
\end{array}
$$

SUBSTITUTION

$$
\begin{aligned}
S & =4-h \\
& =4-1 \quad \text { and sideloads is 3hours. }
\end{aligned}
$$

$$
\begin{aligned}
& s=4-h \\
& 110 h+40 s=230 \\
& 110 n+40(4-h)=230 \\
& 110 n+160-40 n=230 \\
& 70 h=230-160 \\
& \frac{70 n}{70}=\frac{70}{70} \\
& \lfloor h=1 \\
& s=4-h \\
& S=4-h \\
& s=3
\end{aligned}
$$

Ex It took a patrol boat 5 hours to travel 60 km up a river against the current and 3 hours for the return trip with the current. Find the speed of the boat in still water and the speed of the current.
Let " $b^{\prime \prime}$ " the speed of the boat in still water " "c" "I ". " " current
(1)

(1) | distance | speed | time |
| :---: | :---: | :---: |
| 60 | $b-c$ | 5 |
| 60 | $b+c$ | 3 |

(2) | 60 | $b+c$ | 3 |
| :--- | :--- | :--- |

リ
(1)

$$
\begin{aligned}
& 60=5(b-c) \rightarrow \begin{array}{l}
\text { divide each } \\
\text { side by } 5
\end{array} \\
& 60=3(b+c) \rightarrow \begin{array}{l}
\text { divide each } \\
\text { side by } 3
\end{array}
\end{aligned}
$$

(1) $12=b-c$

$$
\begin{aligned}
+(2) 20 & =b+c \\
12+20 & =b+b-c+c \\
\frac{32}{2} & =\frac{2 b}{2} \\
b & =16
\end{aligned}
$$

$$
\begin{aligned}
& 12=b-c \\
& 12=16-c \\
& 12-16=-c \\
& \frac{-4}{-1}=\frac{-c}{-1} \\
& c=4
\end{aligned}
$$

The boat's speed in still week is $16 \mathrm{~km} / \mathrm{h}$ and current's speed is $4 \mathrm{~km} / \mathrm{h}$.

