Systems of Linear-Quadratic Equations

Recall:

The graph of a linear equation is a _____.

The graph of a quadratic equation is a _____.

The diagrams below illustrate all the possible scenarios, in terms of intersection points, between a line and a parabola.

As in the case of a system of two linear equations, the intersection point(s) of a linear equation with a quadratic equation can be found graphically and/or algebraically.

Ex1. Find the point(s) of intersection of the given parabola and line. Solve graphically using desmos and algebraically.

a)
$$y = -x^2 + 4x + 2$$
 and $y = x + 2$

b)
$$y = x^2 + 2x - 3$$
 and $y = 4x - 4$

Ex2. Determine the number of points of intersection of $y = 3x^2 + 12x + 14$ and y = 2x - 8 without solving.

Ex3. The revenue equation for a company is $R(t) = -40t^2 + 300t$, where t is the ticket price in dollars. The cost equation is C(t) = 1600 - 220t. Determine the ticket price that will allow the company to break even.

Ex4. Determine the value(s) of k such that the linear equation y = -5x + k does not intersect the parabola $y = -2x^2 + 3x + 1$.