\qquad

Systems of Linear-Quadratic Equations
Recall:
The graph of a linear equation is a LINEAR.
The graph of a quadratic equation is a PARABOLA
The diagrams below illustrate all the possible scenarios, in terms of intersection points, between a line and a parabola.

Scenario 1:

Scenario 2:

orpsela

Scenario 3:

As in the case of a system of two linear equations, the intersection points) of a linear equation with a quadratic equation can be found graphically and/or algebraically.

Ext. Find the points) of intersection of the given parabola and line. Solve graphically using desmos and algebraically.
a) $y=-x^{2}+4 x+2$ and $y=x+2$ sub (1) into (2)

$$
\begin{aligned}
&-x^{2}+4 x+2=x+2 \\
& 0=x^{2}-3 x \\
& 0=x(x-3) \\
& \underset{x}{ }=0 \quad \underbrace{x}_{2}=3
\end{aligned}
$$

Now we need to find the " y " coordinates for eon " x ".
Sub " O " for x in any equation.

$$
\begin{array}{ll}
x=0 & y_{1}=x+2=2 \\
x_{2}=3 & \left.y_{2}=3+2,2\right) \\
y_{2}=5 & \quad B(3,5)
\end{array}
$$

\qquad
Day 10: Systems of Linear-Quadratic Equations
b) $y=x^{2}+2 x-3$ and $y=4 x-4$

sub (1) into (2)

$$
\begin{gathered}
x^{2}+2 x-3=4 x-4 \\
x^{2}-2 x+1=0 \\
(x-1)^{2}=0 \\
x=1
\end{gathered}
$$

Sub " 1 " for " x " in any equation

$$
\begin{gathered}
x=1 \quad y=(1)^{2}+2(1)-3=1+2-3=0 \\
A(1,0)
\end{gathered}
$$

Ex2. Determine the number of points of intersection of $y=3 x^{2}+12 x+14$ and $y=2 x-8$ without solving.

$$
\begin{aligned}
3 x^{2}+12 x+14 & =2 x-8 \\
3 x^{2}+10 x+22 & =0 \\
D=b^{2}-4 a c & =(10)^{2}-4(3)(22) \\
& =100-264 \\
& =-164
\end{aligned}
$$

Ex. The revenue equation for a company is $R(t)=-40 t^{2}+300 t$, where t is the ticket price in dollars. The cost equation is $C(t)=1600-220 t$. Determine the ticket price that will allow the company to break even.
(1)

$$
\begin{aligned}
& P=R-C \\
& O=R-C \\
& R=C
\end{aligned}
$$

(2)

$$
\begin{aligned}
-40 t^{2}+300 t & =1600-220 t \\
0 & =40 t^{2}-520 t+1600 \\
\frac{0}{40} & =\frac{40\left(t^{2}-13 t+40\right)}{45}
\end{aligned}
$$

$\therefore D<0$, therefore there're no POI

