\qquad

The sine law is very useful for solving triangles:

Solving for a Side $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$	Solving for an Angle $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$
It works for any triangle: A, B, a, and C are sides.	

When Do We Use It?
The Sine Law is used to solve any triangle when given:

| Case 1) AA S |
| :---: | :---: |
| ANGLE - ANGLE - SIDE |\quad| Case 2) SSA |
| :---: |
| SIDE - SIDE - OPPOSITE ANGLE OF |
| ONE OF THESE SIDES |

Exp: Solve for k.

\qquad

Ex. Find the value of $\angle P$.

$$
\begin{aligned}
& \frac{\sin \alpha}{10}=\frac{\sin 45}{12} \\
& \sin \alpha=\frac{10 \cdot \sin 45}{12} \\
& \sin \alpha=0.5893 \\
& \sin ^{-1}(0.5893)=\alpha \\
& \left(\alpha=36^{\circ}\right.
\end{aligned}
$$

Ex. Determine the value of side c. Round to 1 decimal place. (ANS: 5.5)

$$
\frac{c}{\sin 45}=\frac{7}{\sin 65}
$$

$$
c=\frac{7 \cdot \sin 45}{\sin 65}
$$

$$
c=5.5
$$

Ex4. Determine the value of $\angle B$. Round to the nearest angle. (ANS: 57°)

$$
\begin{aligned}
& \frac{\sin \theta}{5}=\frac{\sin 42}{4} \quad \text { more } 5 \text { up } \\
& \sin \theta=\frac{5 \cdot \sin 42}{4} \\
& \sin \theta=0.8364 \\
& \sin ^{-1}\left(\frac{0.8364)=\theta}{(\theta \doteq 57}\right.
\end{aligned}
$$

