RATE

Problem 1: Which carton of eggs (same brand and size) would you advise your family to buy? Which is the better buy economically?
STORE A: $\$ 2.64$ per carton of eggs

STORE B: $\$ 4.50$ per carton of eggs

$$
\text { Cost of } 1 \mathrm{eg}
$$

	Cost .f
$=$	$\frac{\$ 4.50}{18 \mathrm{eg} 95}$
18	$=\frac{\$ 0.25}{1 \mathrm{egg}}$

Conclusion: 12 eg carton is cheaper by $\$ 0.03$ or $3 \not 4$ per one egg.
DEFINITION: Rate is a comparison of two related numbers (quantities) having different units. A rate is usually written as a 'unit rate', in which the second term is always one like in the example above: 22 cents per one egg.

PROPORTION

Proportion is an equation, which states that two fractions are equal.

Problem 2: John's family consumes 4 eggs a day. At this rate, how many eggs would they consume in one year?
(Set up a proportion that shows the daily rate $=$ yearly rate) cross multiply

Problem 3: How much would John's family save in a year if they chose the 12-carton egg? (Set up a proportion that shows amount saved per one egg $=$ amount saved per total eggs in one year)

Example 1: Recipe The recipe calls for 1 cup of rye flour to 2 cups of allpurpose flour. How many cups of rye flour would you need to use if you addd 6 cups of all-purpose flour? $\begin{aligned} & \frac{1 \text { cup rye }}{2 \text { cupsre }}=\frac{?}{6} \\ & ?=3 \\ & \therefore 3 \text { cups of rye flour. } \end{aligned}$	Example 2: Weight A rope's length and weight are in proportion. When 20 m of rope weighs 1 kg , then 200 m of rope weighs: $\begin{aligned} & \frac{1 \mathrm{~kg}}{20 \mathrm{~m}}=\frac{?}{200 \mathrm{~m}} \\ & \times 10 \\ & ? \\ & =10 \mathrm{~kg} . \end{aligned}$
Example 3: Speed A pendulum completes 7 swings every three seconds. How many swings does it complete in a minute? $1 \mathrm{~min}=60 \mathrm{sec}$ $\begin{aligned} ? & =7 \times 20 \\ & =140 \text { sing } \end{aligned}$ - It completes 140 suing.	Example 4: Price (cost) Apples are $\$ 2.00$ per dozen (12), how many apples can you get for $\$ 5.50$? $\begin{aligned} & \frac{\$ 2.00}{12 a p i}>\frac{\$ 5.50}{a} \\ & 2 \times a=12 \times 5.50 \\ & 2 \times a=\frac{66}{\div 2} \\ & \div 2=33 \end{aligned} \quad \therefore \text { You'd get } 33 \text { app/l. }$

RATIO

Ratio is a comparison of two quantities with the same units.

1 yellow square to 2 blue squares
We express ratios in three different ways:

- use ":" to separate the values $\rightarrow 1: 2$
- use the word "to" $\rightarrow 1$ to 2
- write like a fraction $\rightarrow 1 / 2$

Bilal uses the following ingredients for his favorite bread:

- 1 cup of rye flour
- 2 cups of all-purpose flour
- 1 cup of milk

What is the ratio of rye flour to all-purpose flour? $1: 21$ to $21 / 2$
What is the ratio of rye flour to total flour? $1: 3 \quad 1$ to $3 \quad 1 / 3$
What is the ratio of all-purpose flour to total flour? 2 : 3 3 2 to $3 \quad 2 / 3$
What is the ratio of total flour to milk? 3:1 3 to 1 3/1
Write each ratio in simplest form. Find GCF, and then divide each quantity by the GCF.
a. $\begin{array}{rr}6 & G C F=3 \\ \frac{2}{5}\end{array}$
b. $\begin{aligned} & 4: 12: 16 \quad 6 C F=4 \\ & 1: 4: 4 \\ & 1: 3: 4\end{aligned}$
$\begin{array}{ll}\text { c. } 6 \text { to } 10 & \text { GCF: } 2 \\ \div 2 \div 2 & \\ 3 \text { to } 5 & \end{array}$

Practice: Ratios, Rates, and Proportions

Find the unit rate of the following:
e. Mike earns $\$ 42$ in 6 hours.
f. $\$ 350$ for 8 people to attend a
g. 24 pop for $\$ 6.96$
$=\frac{\$ 47}{6 h}$
$=\frac{\$ 7}{1 h}$
$=\frac{\$ 6.96}{24}$
$=\frac{\$ 0.29}{1000}$

Answer the following problems:
h. Jack earned \$50 in 10 hours, while John earned $\$ 105$ in 20 hours. Which person had the better rate of pay?

| Jack John
 $\frac{\$ 50}{10 h}$ $\frac{\$ 105}{20 n}$
 $=\frac{\$ 5}{1 h}$ $=\frac{\$ 5.25}{14}$$\quad \therefore$ John has made | |
| :--- | :--- | :--- |
| | extra $25 \$$ per |

j. Oranges are $\$ 2.00$ per dozen. At this rate, how many oranges could you get for $\$ 3.50$
$\frac{\$ 200}{12} \nsubseteq \frac{\$ 3.50}{? \rightarrow a}$

$$
\begin{aligned}
2 \times a & =12 \times 3.50 \\
2 \times a & =42 \\
\div 2 & \div 2 \\
a & =21
\end{aligned} \quad \therefore 21 \text { apples. }
$$

1. Which is the better value? $\$ 350$ for a bus of 35 people, or $\$ 440$ for a bus of 40 people?
$\frac{\$ 350}{35 p}=\frac{\$ 10}{1 p}$ c better value
$\frac{\$ 440}{40 p}=\frac{\$ 11}{1 p}$
i. A bus travels 10 km in 25 minutes. At this rate, how far will the bus travel in one hour?

$\begin{aligned} 10 \cdot 60 & =25 \cdot d \quad \therefore 24 \mathrm{~km} \text { in one hour. } \\ 600 & =25 \cdot d \\ \div 2 i & \div 25 \\ 24 & =d\end{aligned}$
k. Katherine cycled 30 km in 2 hours. If she continues at the same rate, what distance will she travel in 7
hours? ?
$\frac{30 \mathrm{~km}}{2 \mathrm{hr}} \div \frac{\mathrm{d}}{7 \mathrm{hr}}$
\therefore She'll travel 105 km
$30 \times 7=2 \times d \quad$ in 7 hours.
$2_{42}^{10}=2 \times d$
$105=d$
m . Which is the better value? 28 g of mixed nuts for $\$ 0.84$, or 35 g of mixed nuts for $\$ 1.40$?

Find the missing value in the following proportions *round to 2d.p. where necessary
n. $\frac{3}{8} \neq \frac{\mathrm{m}}{5}$
o. $\frac{2}{k} \times \frac{11}{4.5}$
p. $\frac{1.2}{2.8} \times \frac{3}{p}$
q. $\frac{5}{3.2} \times \frac{2.5}{y}$
$15=8 \mathrm{~m}$
$\underset{\div 11}{9}=11 . k$
$1.2 p=8.4$
$\div 1.2$
-1.2
$p=7$
$5 \cdot y=8 \div 5$
$\div 5=1.6$

ANSWERS: a. 1:5, b. 1:3, c. 5:6, d. 4:1, e. $\$ 7 / \mathrm{h}$, f. $\$ 43.75 / \mathrm{p}$, g. $\$ 0.29 / \mathrm{pop}$, h. John, i. $24 \mathrm{~km} / \mathrm{h}, \mathrm{j} .21$ oran., k. $105 \mathrm{~km}, \mathrm{l}$.
$\$ 350 / 35, \mathrm{~m} .28 \mathrm{~g} / \$ 0.84$, n. $\mathrm{m}=1.88$, o. $\mathrm{k}=0.82$, p. p=7, q. $\mathrm{y}=1.6$

