INTRODUCTION TO DISTANCE - TIME GRAPHS

Distance is the total length travelled by an object. Distance is plotted on the y-axis (dependent) and time is plotted on the x -axis (independent).

On the left, you can see that the object represented by line A has travelled 10 m in 2 s whereas the object represented by the line B has only travelled 4 m in this time and is therefore travelling more slowly.
'Straight lines' on a distance-time graph tell us that the object is travelling at a constant speed. Note that you can think of a stationary object (not moving) as travelling at a constant speed of $0 \mathrm{~m} / \mathrm{s}$.

FRONA

CALCULATING SPEED FQR THE GRAPH

The slope (gradient) of a distance-time graph indicates the speed of the object.

$$
\text { Speed }=\frac{\text { change in distance }}{\text { change in time }}=\frac{\Delta \mathrm{d}}{\Delta \mathrm{t}}=\frac{\boldsymbol{r i s e}}{\boldsymbol{r u n}}
$$

*Note that if the graph slopes downwards, you will get a negative value indicating the object is travelling back towards its origin.

	Part A	Part B	Part C
Distance Travelled	120 km	0 km	-30 km
Time Travelled	2 h	2 h	2 h
Speed	$120 \div 2$ $60 \mathrm{~km} / \mathrm{h}$	$0 \mathrm{~km} / \mathrm{h}$	$-15 \mathrm{~km} / \mathrm{h}$

Total Distance travelled from the origin $=120+30$

$$
=150
$$

DESCRIBING THE MOTION

During Part A of the journey the object travels 120 km in 2 hours. It is travelling at a constant velocity (a fancy term for speed when you include the direction) of $+60 \mathrm{~km} / \mathrm{h}$.

During Part B of the journey the object travels $\mathcal{O} \mathrm{km}$ in $\underline{\mathcal{Z}}$ hours. It is stationary for $\mathbf{2}$ hours.
During Part C of the journey the objects travels -30 km in 2 hours. It is travelling at a conotant velocity of $-15 \mathrm{~km} / \mathrm{h}$ back to its starting point, our reference point 0 .

The graph below shows Cole's journey between his home and a campsite. The origin indicates home.

	$\begin{gathered} \hline \text { Part } \\ \text { AB } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Part } \\ \text { BC } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Part } \\ \text { CD } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Part } \\ \text { DE } \end{gathered}$	$\begin{gathered} \hline \text { Part } \\ \text { EF } \\ \hline \end{gathered}$
Distance Travelled	$+3 \mathrm{~km}$	$0 \mathrm{~km}^{\text {m }}$	9 km	0 km	$-12 \mathrm{~km}$
Time Travelled	$5 h$	3h	4h	$2 h$	6h
Speed	$\begin{gathered} +0.60 \mathrm{~km} / \mathrm{h} \\ 0 R \\ 600 \mathrm{~m} / \mathrm{h} \end{gathered}$	$0 \mathrm{~km} / \mathrm{h}$		$\mathrm{Okm} / \mathrm{h}$	$-2 \mathrm{~km} / \mathrm{h}$

Note $=+$ direction represents going towards campsite, - direction represents going back home (origin).

Describe the journey for each part using the words: constant velocity, direction, stationary

Part $\mathbf{A B}$	Cole travelled 3 km in 5 hours at a constant velocity of $+0.60 \mathrm{~km} / \mathrm{h}$ towards the campsite.
Part $\mathbf{B C}$	He had a break for 3 hours where he remained stationory.
Part $\mathbf{C D}$	He travelled 9 km in 4 hours at a constant velocity of $+2.25 \mathrm{~km} / \mathrm{h}$ towards the campsite.
Part $\mathbf{D E}$	After spending 2 hous ot the campsite, he realized he forzot his fishing gear.
Part $\mathbf{E F}$	Cole trovelled bock home -12 km of $-2 \mathrm{~km} / \mathrm{h}$.

CURVED LINES

Increasing Speed (acceleration)

Decreasing Speed (deceleration)

'Curved lines' on a distance time graph indicate that the speed is changing.
The object is either getting faster = 'accelerating' or slowing down = 'decelerating'. You can see that the distanced moved through each second is changing.

