Date: Unit 5: Linear Relations

INTRODUCTION TO DISTANCE – TIME GRAPHS

Distance is the total length travelled by an object. Distance is plotted on the y-axis (dependent) and time is plotted on the x-axis (independent).

On the left, you can see that the object represented by line A has travelled 10m in 2s whereas the object represented by the line B has only travelled 4m in this time and is therefore travelling more slowly.

'Straight lines' on a distance-time graph tell us that the object is travelling at a **constant speed**. Note that you can think of a stationary object (not moving) as travelling at a constant speed of 0 m/s.

FROM CALCULATING SPEED FOR THE GRAPH

The slope (gradient) of a distance-time graph indicates the speed of the object.

Smood -	change in distance	_	Δd	_rise	
Speed =	change in time	_	Δt	- run	

 Δ = Greek Letter Delta represents change

*Note that if the graph slopes downwards, you will get a negative value indicating the object is travelling back towards its origin.

	Part A	Part B	Part C
Distance Travelled	120km	Okm	-30km
Time Travelled	2h	2h	2h
Speed _	120+2 60km/h	Okm/n	-15km,

Fotal Distance travelled from the origin = 120 + 30= 150

DESCRIBING THE MOTION

During Part A of the journey the object travels $\frac{120}{150}$ km in 2 hours. It is travelling at a constant velocity (a fancy term for speed when you include the direction) of $\frac{160}{160}$ km/h.

During Part B of the journey the object travels O km in $\underline{\lambda}$ hours. It is stationary for 2 hours.

During **Part C** of the journey the objects travels $\frac{30}{2}$ km in $\frac{2}{2}$ hours. It is travelling at a <u>constant velocity</u> of -15 km/h back to its starting point, our reference point 0.

The graph below shows Cole's journey between his home and a campsite. The origin indicates home.

	Part AB	Part BC	Part CD	Part DE	Part EF
Distance Travelled	+3km	OŁm	9km	Okm	-12km
Time Travelled	5h	3h	4h	2h	6h
Speed +	0.60 km/	Okm/h	+2.25 km/	Okm/h	-2km/h
600 m/h 2250 m/h					
ote= + direction represents going towards campsite, - direction					

represents going back home (origin).

Describe the journey for each part using the words: constant velocity, direction, stationary

Part AB	Cole travelled 3km in 5 hours at a constant velocity of +0.60km/h towards the campsite.
Part BC	the had a break for 3 hours where he remained stationary,
Part CD	He travelled 9km in 4 hours at a constant velocity of +2.25 km/h towards the campsite.
Part DE	After spending 2 hours of the campsite, he realized he forgot his fishing gear.
Part EF	Cole trovelled bock home -12 km in 6 hours at a constant velocity of -2km/n.

CURVED LINES

'Curved lines' on a distance time graph indicate that the speed is changing. The object is either getting faster = **'accelerating**' or slowing down = **'decelerating**'. You can see that the distanced moved through each second is changing.