\qquad

SEQUENCES

A sequence is a list of numbers arranged in an order.
The numbers in a sequence are called terms
The first term is referred to as t_{1}, the second as t_{2}, and so on.

Infinite or Finite

A sequence that has a last term is a finite sequence. A sequence that has no last term and continues indefinitely is an infinite sequence.
The $\boldsymbol{n}^{\text {th }}$ term is referred to as $\boldsymbol{t}_{\mathbf{n}}$ (or the general term of the sequence), where n is a natural number referring to the position of the term in the sequence.

Examples:

$\{1,2,3,4, \ldots\}$ is a very simple sequence (and it is an infinite sequence)
$\{20,25,30,35, \ldots\}$ is also an infinite sequence
$\{1,3,5,7\}$ is the sequence of the first 4 odd numbers (and is a finite sequence)

$\{4,3,2,1\}$ is 4 to 1 backwards

$\{1,2,4,8,16,32, \ldots\}$ is an infinite sequence where every term doubles
$\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$ is the sequence of the first 5 letters alphabetically
$\{f, r, e, d\}$ is the sequence of letters in the name "fred"
$\{0,1,0,1,0,1, \ldots\}$ is the sequence of alternating 0 s and 1 s (yes they are in order, it is an alternating order in this case)

Ex. Given the formula for the $n^{\text {th }}$ term, determine the first three terms of each sequence.
a) $t_{n}=3 n^{2}-4$

$$
\begin{aligned}
& t_{1}=3(1)^{2}-4=3-4 \\
& t_{1}=-1
\end{aligned}
$$

$$
t_{2}=3(2)^{2}-4
$$

$$
t_{2}=8
$$

$$
t_{3}=3(3)^{2}-4
$$

$$
=27-4
$$

$$
t_{3}=23
$$

$$
\mathbf{b} f(n)=\frac{n-2}{n+2}
$$

$$
f(1)=\frac{1-2}{1+2}=-1 / 3
$$

$$
f(2)=\frac{2-2}{2+2}=1 / 4=0
$$

\qquad

ARITHMETIC SEQUENCES

In an arithmetic sequence the difference between consecutive terms is constant.
This constant is the common difference, \boldsymbol{d}.
The first term, $\mathbf{t}_{\mathbf{1}}$, is denoted by the letter \boldsymbol{a}.

Ex2. Find the next three terms of each arithmetic sequence.
a) $3,7,11, \ldots \quad d=7-3=4$
b) $25,18,11, \ldots \quad d=18-25=-7$

$$
\begin{aligned}
& t_{4}=11+4=15 \\
& t_{5}=19 \\
& t_{6}=23
\end{aligned}
$$

$$
t_{4}=11-7=4
$$

$$
\begin{aligned}
& t_{5}=4-7=-3 \\
& t_{6}=-3-7=-10
\end{aligned}
$$

c) $\frac{3}{4}, \frac{5}{4}, \frac{7}{4}, \ldots \quad d=\frac{5}{4}-\frac{3}{4}=\frac{2}{4}=\frac{1}{2}$
$t_{4}=\frac{7}{4}+\frac{1}{2}=\frac{7}{4}+\frac{2}{4}=\frac{9}{4}$
$t_{5}=\frac{9}{4}+\frac{2}{4}=\frac{11}{4}$
$t_{6}=\frac{11}{4}+\frac{2}{4}=\frac{13}{4}$
Note that the general arithmetic sequence is

$$
a, a+d, a+2 d, a+3 d, \ldots
$$

where a is the first term and d is the common difference.

General Term of an Arithmetic Sequence

$\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) d$, where n is a natural number

Recursive Formula of an Arithmetic Sequence

$\mathrm{t}_{1}=a, \mathrm{t}_{\mathrm{n}}=\mathrm{t}_{\mathrm{n}-1}+d$, where n is a natural number and $\mathrm{n}>1$

Ex. Find the general term, t_{n}, and the recursive formula for each arithmetic sequence. Also, find the indicated term.

$$
\begin{aligned}
& \text { b) } \begin{aligned}
&-3,2,7, \ldots ; t_{22} \quad a(=2-(-3)=5 \quad a=-3 \\
& t_{n}=a+(n-1) d \\
& t_{n}=-3+5(n-1) \\
&=-3+5 n-5 \\
& t_{n}=5 n-8 \\
& t_{22}=-8+5(22) \\
&=-8+110 \\
&=102
\end{aligned}
\end{aligned}
$$

Recall:
$\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \ldots, \mathrm{t}_{\mathrm{n}} \mathrm{n}$ states the number of terms and t_{n} is the value of the $n^{\text {th }}$ term.

Ex4. Determine the number of terms in the finite arithmetic sequences:
а) $3,15,27, \ldots, 495$

$$
Q=3 \quad d=12
$$

$$
\begin{aligned}
t_{n} & =a+(n-1) d \\
t_{n} & =3+(n-1) 12 \\
t_{n} & =3+12 n-12 \\
t_{n} & =12 n-9 \\
495 & =12 n-9 \\
504 & =12 n \\
n & =42
\end{aligned}
$$

b)

$$
\begin{aligned}
& -10,-14,-18,-22, \ldots,-138 \quad a=-10 \\
& t_{n}=a+(n-1) d \\
& t_{n}=-10-4(n-1) \\
& t_{n}=-10-4 n+4 \\
& t_{n}=-4 n-6
\end{aligned}
$$

\therefore There are 42 terms in the sequence.
$d=-4$

$$
\begin{aligned}
-138 & =-4 n-6 \\
-132 & =-4 n \\
33 & =n
\end{aligned}
$$

\therefore There re 33 terms in the sequence.

Ex5. Given $\mathrm{t}_{12}=52$ and $\mathrm{t}_{2}=102$, find a and d, then write the formula for t_{n}.
(1)

$$
\begin{aligned}
t_{n} & =a+(n-1) d \\
t_{2} & =a+(2-1) d \\
102 & =a+d \\
t_{n} & =a+(n-1) d \\
& =107+(n-1)(-5) \\
t_{n} & =107-5 n+5
\end{aligned}
$$

(2) $52=a+11 d$

$$
\begin{aligned}
& 102=a+d \\
& -\quad 52=a+11 d
\end{aligned} \rightarrow 102=a-5
$$

Ext. A music hall has 35 seats in the front row, 44 seats in the second, 53 seats in the third, and so on.
a) How many seats are in the $12^{\text {th }}$ row?

$$
\begin{aligned}
& 35,44,53 \quad a=35 \quad d=9 \\
& t_{n}=a+(n-1) d \\
& t_{n}=35+(n-1) 9 \\
& t_{n}=35+9 n-9 \\
& t_{n}=9 n+26
\end{aligned}
$$

$$
\begin{aligned}
t_{12} & =9(12)+26 \\
& =108+26 \\
t_{12} & =134
\end{aligned}
$$

\therefore There 're 134 seats in the $12^{\text {th }}$ row.
b) If the last row has 215 seats, how many rows are there in the music hall?

$$
\begin{aligned}
& 35,44,53, \cdots, 215 \quad a=35 \quad d=9 \quad t_{n}=215 \\
& t_{n}=9 n+26 \\
& 215=9 n+26 \\
& 189=9 n \\
& n=21
\end{aligned}
$$

