Experimental Probability

TERMINOLOGY

Probability: Ameasure of the like i hood (chance) an event will occur.

Trial: One round in a probability experiment

Outcome: A possible result of an experiment (eggossibilities of a com toss)

Event: A set of outcomes with the same result. (eg getting heads)

Frequency: Total # of outcomes for an event. (eg getting heads 3 times)

Where is probability used? Weather forecast, sport statistics,

gambling odds, census data, accident statistics

Probability is always a value between $\frac{0}{2}$ and $\frac{1}{2}$ and can be represented as a fraction $\left(\frac{2}{5}\right)$, decimal $\left(0.4\right)$, percent 40%

Experimental Probability is determined using the results of an experiment

Experimental Probability Formula:

P(event) = # successful trials

EXAMPLE 1

doubles

a) Two six-sided dice were rolled 20 times. Doubles were rolled 4 times. Determine the experimental probability of rolling doubles. Express your answer as a fraction in lowest terms, as a decimal, and as a percent.

P(doubles) = # success ful trials total # trials

As decimal == 0.2

As a percent == 20%

: the experimental probability
of rolling doubles is + or 20%

b) Write the probability of NOT rolling doubles as a fraction in lowest terms, as a decimal and as a percent. Event = no doubles.

P (no doubles) = # successes total triak

P(no doubles) = 1 - P(doubles)

EXAMPLE 2

A coin was tossed 30 times. The experimental probability of turning up heads was $\frac{2}{5}$.

a) How many times did the coin turn up heads?

event = heads P(heads) = # successful trials > 2(30) = 1X 2 = X 12 = X

so the coin turned up heads 12 times

b) How many times did the coin turn up tails?

tails = total trials - # heads = 30-17

.. the coin turned up fails 18 times

c) What was the experimental probability of it turning up tails?

P(tails) = 1- P(heads) - 7-3

.. the experimental probability Of turning up tails is 3 or 60%.

EXAMPLE 3

The results of rolling a six-sided die are displayed in the graph.

a) How many trials were there?

4+3+1+5+3+4= 20

: there were

b) How many times was a 5 rolled?

3 times

c) Find the experimental probability of rolling a 6.

P(nollale) = # successes : 4 = 1

3 **Number Rolled** : the experimental probability of norting a six is \frac{1}{5} or 20%.

Roll of a Die

d) Find the experimental probability of rolling a 3 or 5.

P(10/1 a 3 or 5) = #successes total trials = 1+3 = 4 = 1

.. the experimental probability of retting a 3 or 5 is & w 20%.