Mathematics 9 Day 1: Intro to Word Problems

Introduction: Word Problems

Match each sentence with the correct equation (place the question number beside the answer):

1. A number increased by three is equal to nine. x - 9 = 6x + 3 = 92. A number **decreased by** four **is equal** to twelve. $\frac{x}{2} = 8$ X - 4 = 12x + 3 = 93. Four times a number is equal to sixteen. 4x = 1612 4. A number **divided by** three **is** eight. 2x + 3y = 27 $\frac{x}{3} = 8$ 5. John's age will be nineteen in three years. x - 4 = 12x + 3 = 19 $x^2 = 16$ 6. Nine years **ago**, Mary's age was six. x - 9 = 67. Six **less** than a number is 10. 0.05x + 0.25y = 5.65X - 6 = 104x = 168. A number **increased by** five **is equal** to negative four. X + 5 = -4x - 6 = 109. The **square** of a number **is** sixteen. $\chi^{2} = 16$ x + 3 = 1910. A number **divided by** six **is equal** to three. $\frac{11. I \text{ have x nickels and y quarters. I have$ **a total of**\$5.65 $\frac{x}{6} = 3$ $0.07 \times + 0.25 = 5.65$ x - 5 = -412. It takes 2 hours to mow a lawn and 3 hours to weed a garden. In one month I mowed x lawns and weeded y gardens. It took 27 hours.

> In word problems, first we change language statements into mathematical statements (equations) and then solve for the variable.

- 1. Use the first clue to create a LET statement which shows how the variable represents the unknown quantities in the problem.
- 2. Write the second unknown in terms of the first. HINT: The second unknown is compared to the first unknown.
- 3. Create an equation from the second clue. Do NOT include units in equations.
- 4. Solve the equation.
- 5. Use the answer to #4 to determine the value of the other unknowns found in the LET statements.
- 6. Conclusion: Answer the question in sentence form include units.
- Example: Jenna ran 5 kilometres more than Kelly. The two girls ran a total of 27 kilometres. How far did each of them run?

Solution: het "x" be the distance that Kelly ran
Kelly Jenna
(X) X+5
Kelly + Jenna = 27
Kelly + Jenna = 27
X + (x+5) = 27
X+x+5 = 27
X+x+5 = 27-5
Jenna ran II+5=Iblen

$$\frac{2x}{2} = \frac{22}{2}$$

EVERSE

Number Questions

1. a) A certain number is twice another number. What are the possible values for the sum of these two numbers?

First Number	1	2	3	7	9	100	п
Second Number	ん	4	6	lγ	18	200	21
Sum	3	6	0	21	27	300	31
b) One number i	s increas	ed by 6 t	o get a s	econd nu	umber. In	terms of n,	how can we represe
The first number?	∘	The se	econd nu	mber? _	n+6	The su	um? 2n+6
c) One number i	s decrea	sed by 3	to get a s	second n	umber. Ir	n terms of n	, how can we repres
The first number?	<u>^</u> _	The se	econd nu	mber?	n-3	The su	um? <u>2n-3</u>
d) The second n represent:	umber is	four less	than sev 2 ⁻¹ 70 -	ven times - u	s the first	number. In	terms of n, how can
The first number?	<u>^</u>	The se	econd nu	mber?	7n-4	The su	ım?4
e) The second n represent:The first number?	umber is	three mo		$\frac{1}{4}$ + 3	he first n	umber. In te	erms of n, how can w 32 ± 3
The first number?	, ∩	The se	econd nu	mber? 🧕	<u> </u>	The su	ım? 🔽
plying to Problen							
a) One number i numbers.	s three ti	mes anot	ther num	ber. If the	e sum of		s is 36, determine th
1e+ "n"	be t	he firs-	t num	ber		→ .'.	1 st number is
1st		2 nd				(1 st number is 3
					/		

Λ

n + 3n = 36

n = °1

= <u>36</u>

3n

Mathematics 9 Steps for Solving Word Problems

Date:

b) One number is four more than twice another number. If both numbers are positive and the difference between the numbers is 27, determine the numbers.

CRENING Let "n" be the first number

$$\frac{1^{3+}}{n} \frac{2^{nd}}{2^{n+4}}$$

$$\frac{1^{3+}}{n} \frac{2^{nd}}{2^{n+4}}$$

$$\frac{1^{3+}}{n} \frac{2^{nd}}{2^{n+4}}$$

$$\frac{1^{3+}}{2^{n+4}} \frac{2^{n-4}}{2^{n-4}}$$

$$\frac{1^{3+}}{2^{n-4}} \frac{1^{3+}}{2^{n-4}} \frac{1^{3+}}{2^{n-4}}$$

$$\frac{1^{3+}}{2^{n-4}} \frac{1^{3+}}{2^{n-4}} \frac{1^{3+}}{2^{n-4}}$$

$$d + d - 2 = 12$$

$$2d - 2 + 2 = 12 + 2$$

$$\frac{2d}{2} - \frac{14}{2}$$

$$\frac{2}{d} = 7$$

$$\frac{14}{2}$$

$$\frac{2}{d} = 7$$

$$\frac{14}{2}$$

$$\frac{2}{d} = 7$$

$$\frac{14}{2}$$

$$\frac{2}{d} = 7$$

In your notebooks, give full solutions to the following problems.

- 3. a) Lake Ontario is 4 times as deep as Lake Erie. The sum of their depths is 300 metres. What is the depth of each lake?
 - b) Angel waterfall in Venezuela is 20 times as high as Niagara Falls. The difference between their heights is 950 metres. What is the height of each of the falls?
 - c) Lake Erie is 77 kilometres longer than Lake Ontario. Their length total 697 kilometres. Find the length of each lake.
 - d) Lacey is three times as old as Joey. The difference in their ages is 12 years. Find their ages.
 - e) Bill's mother is 22 years older than he is. The sum of their ages is 60. Find their ages.
 - f) One number is 5 more than another number. Three times the greater plus twice the lesser is 30. Determine the numbers.

ł

C. het "l" be the length of Lake Onterio

$$\begin{array}{c}
\hline
0ntario | Eeric \\
\hline
l + l + 77 = 697 \\
2l + 17 = 697 - 77 \\
2l + 17 = 697 - 77 \\
\underline{2l} = 620 \\
\hline
l = 310 \\
\hline
\end{array}$$
Lake Ontario is 310km halve Eeric is 310 + 77 = 387 km.

d. det "a" represent Joey's age.

$$\frac{Joey}{a} \left(\begin{array}{c} Lauy \\ 3a \\ \end{array} \right)$$

$$3a - a = 12$$

$$\frac{2a}{2} = \frac{12}{2}$$

$$\frac{a}{2} = 6$$

$$\therefore Joey is 6 years old$$

$$dauy is 3(6) = 18 years old.$$

e. $\lambda e t "a"$ be the age of Bill. $\frac{Bill | Mother|}{a | a+22}$ a + a + 22 = 60 2a + 22 - 22 = 60 - 22 $\frac{2a}{2} = \frac{38}{2}$ $a = \frac{38}{2}$ $a = \frac{38}{2}$

f. Let "n" be the 1st number

$$\frac{1^{st}}{n} | \frac{2^{nd}}{n+5}$$

$$3(n+5) + 2n = 30$$

$$3n + 15 + 2n = 30$$

$$5n + 15 + 2n = 30$$

$$5n + 15 - 15 = 30 - 15$$

$$\frac{5n}{5} = \frac{15}{5}$$

$$[n = 3]$$

$$\therefore 1^{st} number is 3$$

$$2^{nd} number is 3 + 5 = 8$$

Mother is 19+22 = 41 years old.