Modelling Quadratic Relations

ACTIVITY

Plot the points and draw the graph for each of the relations below.

	\mathbf{x}	\mathbf{y}
\boldsymbol{K}	-1	-3
\mathbf{L}	0	-4
M	1	-3
N	2	0
0	3	5

LINEAR VS QUADRATIC

The graph of a Linear Equation $y=m x+b$ is a straight line The graph of a Quadratic Equation $y=A x^{2}+B x+C$ is a parabolic curve

$1^{\text {st }} \& 2^{\text {nd }}$ DIFFERENCES

$1^{\text {st }}$ differences: for evenly spaced X values, find the difference between consecutive \underline{Y}
\qquad values $2^{\text {nd }}$ differences: determine the difference between consecutive \qquad

All $1^{\text {st }}$ diff. are the some; therefore, it's linear

All $2^{\text {nd }}$ diff are the same; therefore, it's quadratic

DEFINITIONS

Parabola: symmetrical "U" shaped curve that opens up/down;
Vertex: lowest or heighest point on a parabola
Minimum: lowest paint on a parabola that opens up iv
Maximum: highest point on a parabola that opens down
\qquad

Maxi nu:

LINEAR OR QUADRATIC? HOW TO TELL

If the graph is a parabola \rightarrow quadratic
If $1^{\text {st }}$ differences are constant \rightarrow linear
If $2^{\text {nd }}$ differences are constant \rightarrow quadratic
If the degree of the polynomial is 1 (has x term only) \rightarrow linear $y=2 x+1$
If the degree of the polynomial is 2 (has x^{2} term) \rightarrow quadratic $y=2 x^{2}+1$

ACTIVITY

For each example, evaluate or estimate for $\mathrm{x}=2$ and identify whether it is linear or quadratic.
a) $y=-3(x+1)^{2}+1$
$=-3(2+1)^{2}+1$
$=-3(3)^{2}+1$
$=-27+1=-26 / 1$
b) $2 x-y+7=0$
c)

d)

APPLICATION PROBLEM

A football was thrown in the air. Its path can be modelled by the relation $h=-5 t^{2}+20 t+1.5$ where h is the height of the football in metres and t is the time in seconds.
a) Complete the table of values and graph the relation.

\boldsymbol{t}	\boldsymbol{h}
0	1.5
1	16.5
2	21.5
	$=-5(0)^{2}+20(0)+1.5=1.5$
	$=-5(2)^{2}+20(2)+1.5=-20+40+1.5$
3	16.5
4	1.5
5	
	$=-5(3)^{2}+20(3)+1.5=-45+60+1.5$
	$=-5(4)^{2}+20(4)+1.5=-80+80+1.5$
$=-5(5)^{2}+20(5)+1.5=-125+100+1.5$	

b) Use your graph to estimate how long the ball was in the air. about 4.1 sec .
c) Use your graph to estimate the coordinates of the vertex of the relation. Explain the meaning of the coordinates of the vertex in this context. $\mathrm{V}(2,21,5)$ when the ball is in $\cdot 1 / \mathrm{l}$ air for 2 see, its
d) Explain the meaning of the data in the first row of the table. max height is 21.5 m . It's time spent for the duration of the ball travelled in the pis.

Modelling Quadratic Relations Practice

1. Graph each relation. Use the graph to determine if the relation is linear, quadratic, or nequher.
a)

c)

d)

Page $\mathbf{3}$ of 5
2. In question 1, complete the first and second differences to check if your diagram is correct. Are these expressions linear or non-linear.
3. Which of these relations are quadratic? How do you know?
a) $y=x^{(3)}+4$ Cubic
b) $y=2 x^{(2)}+5 x-6 \quad Q$
c) $y=3 x+1 \quad($
d) $y=6+\sqrt{2} \quad Q$
e) $y=(\hat{x})+7 \quad L$
f) $y=-4 x^{2}+4$
4. Estimate the vertex value for each relation, and state if it is a maximum or a minimum.
a)

b)

5. A box of food supplies is parachuted from a cargo plane over a remote village in Africa. The height, h, of the box, in metres, t seconds after being dropped from the plane is given by the relation:

$$
h=-0.5 t^{2}+1000
$$

a) Complete the table of values.

Time (s)	Height (m)			
0	$-0.5(0)^{2}+1000$ $=1000 \mathrm{~m}$			
10	$=-0.5(10)^{2}+1000$			
$=950$		$	$	$=-0.5(20)^{2}+1000$
:---:				
20800				
30		$=-0.5(30)^{2}+1000$		
:---				
$=550$				
40				

b) Graph the relation.
c) Is the relation quadratic? Explain.

Quadratic b/c the shape is acurve.
6. A daycare owner wants to use 160 m of fencing to build a small rectangular playground. She wants the playground to have the greatest possible area.
a) Complete the table of values.

Length (m)	Width (m)	Perimeter (m)	Area $\left(\mathrm{m}^{2}\right)$
70	10	160	700
60	20	160	1200
50	30	160	1500
40	40	160	1600
20	50	160	1500
10	70	160	700

b) In the fourth column of the table, calculate the area for each pair of dimensions.
c) Draw a graph to compare the length and the area.
d) Use the graph to determine the dimensions of the playground with the greatest possible area.

It'd be a square with the dimensions $l: 40$ and w:40
7. A golf warehouse sold 200 sleeves of golf balls for $\$ 3$ each. A survey suggests that for every $\$ 1$ increase in price, sales will drop by 40 sleeves.
a) Complete the table of values.

Price $(\$)$	Number Sold	Revenue $(\$)$
3	200	600
4	160	640
5	120	600
6	80	480
7	40	280

b) Draw a graph to compare price and revenue.
c) Which price will result in a maximum revenue? $\$ 4$
d) What is the maximum revenue?

$$
\text { max rev is } \$ 640
$$

