\qquad

TRIGONOMETRY

Trizonometry is the branch of mathematics dealing with the relations of the sides and angles of triangles and with the relevant functions of any angles. Simply, it helps us calculate the distance and angles.

The triangle with a 90 degree is called a right triangle.
Labelling the right triangle right is the most crucial step in trigonometry.
The hypoten $45 c$ is always the longest side, across from the right angle. The other two sides are named either 'side odjacent or 'side oppositc depending on the location of reference angle θ (theta).

KEY WORDS

Trigonometry
Right
Hypotenuse
Adjacent
Opposite
Sine
Cosine
Tangent
Right
SOH
CAH
TOA

Ex1. In $\triangle \boldsymbol{X Y Z}$, label the hypotenuse (H), adjacent (A) side, and opposite (O) side for θ

Ex2. In $\triangle \boldsymbol{X Y Z}$, label the hypotenuse (H), adjacent (A) side, and opposite (O) side for θ.

PRIMARY TRIGONOMETRIC RATIOS

By definition, ratio is the comparison of two or more quantities with the same units. There are three primary trigonometric ratios: Sine, Cosine and tangent

Primary trig ratios help us calculate angles and lengths in construction, navy, landscaping, electricity, etc.

We can use the acronym SOH-CAH-ToA to help us remember the trigonometric ratios.

Example: Determine the primary trig ratios for the following triangle $\sin \theta^{\circ}=0 / H^{\prime}=5 / 13$
$\cos \theta^{\circ}=A / 4=12 / 13$
$\tan \theta^{\circ}=0 / A=5 / 12$

\qquad

FINDING SIDE LENGTHS

Solved example 1: Find the length of side AC to the nearest tenth.

Step 1:

Label the sides of your triangle relative to the given angle

*Note: Do not label side BC.

Step 2:

Determine which trig ratio to use (sin, cos, tan)
Side lengths AB and AC give us the letters OH ; therefore, we can calculate the sine ratio. Or simply choose the matching ratio from SOH CAH TOA. OH is only in SOH.

Step 3:

Set up the equation with the unknown side and solve.
$\begin{array}{ll}\sin 25=\frac{o}{12} & * \text { multiply both side with } 12 \\ 12 \times \sin 25=\frac{o}{12} \times 12 & * 12 \text { on the right side will cancel }\end{array}$

3 Steps to

 SolvingStep 1:
Label the sides of your triangle relative to the given angle

Step 2: Determine which trig ratio to use (sin, cos, tan)

Step 3:
Set up the equation with the unknown side and solve.
$5.1=0$
\therefore Side AC is approximately 5.1 cm .

Solved example 2: Find the length of side BC to the nearest tenth.

A 15 m

$\cos 10=\frac{15}{H} \quad$ * multiply both sides by H
$H \times \cos 10=\frac{15}{H} \times H \quad * \mathrm{H}$ on the right side will cancel.
$H \times \cos 10=15 \quad *$ Divide both sides by $\cos 10$ to leave H by itself on left side
$H \times \cos 10 \div \cos 10=15 \div \cos 10$
$H=15 \div \cos 10$
\therefore Side AB is approximately 15.2 m .
\qquad

Practice

1. Identify the opposite, adjacent, and hypotenuse sides associated with the indicated angle.

b)

c)

2. Using your calculator, evaluate the following ratios. Round your answers to three decimal places.
a) $\sin 30^{\circ}=0.5$
b) $\cos 45^{\circ}=0.7071$
c) $\tan 60^{\circ}=1.7321$
3. Find the length of the unknown side, rounded to one decimal.
a)

b)

$$
13.4 \doteq x
$$

$x \cdot \tan 42=32$

$$
x+b x 42 \div+a x 4^{2}=32 \div \tan 42
$$

$$
x \doteq 35.5
$$

d) ${ }_{11} \mathrm{~A}_{\mathrm{m}}^{\mathrm{m} / 8^{\circ}} \frac{\mathrm{O}_{\mathrm{x}}}{}$

$$
\tan 78=\frac{x}{11}
$$

$$
11 \cdot \tan 78=\frac{x}{11} \cdot 11
$$

4. Find the measures of sides x and y to the nearest tenth of a metre.

$$
51.8 \doteq x
$$

$$
\begin{gathered}
\tan 35=\frac{8.3}{x} \\
x \cdot \tan 35=\frac{8.3}{x} \cdot x \\
x \cdot \tan 35=8.3 \\
x \quad x \cdot \tan 35 \div \tan 35=8.3 \div \tan 35 \\
x \\
x
\end{gathered}
$$

5. Based on the following diagram use the values given to find the missing side indicated.
a) $\angle A=55^{\circ}, c=25 m \rightarrow$ find a
b) $\angle A=65^{\circ}, c=32 \mathrm{~cm}, \rightarrow$ find b
c) $\angle B=15^{\circ}, c=42 m \rightarrow$ find b
d) $\angle B=35^{\circ}, c=55 \mathrm{~cm}, \rightarrow$ find a

a) $\sin 55=\frac{a}{25}$
$a=\sin 55 \times 25$
$a=20.5$

$=$| $b=25$ |
| :--- |
| $\cos 65=\frac{b}{32}$ |
| $b=\cos 65 \times 32$ |
| $b \doteq 13.5$ |

