PYTHAGOREAN THEOREM REVIEW

'RIGHT - ANGLE TRIANGLE' - A right triangle is a triangle with one 90° angle. For example:

$$
a^{2}+b^{2}=c^{2}
$$

Solving for the Hypotenuse

Solving for a side

Find the value of the missing side:
$5^{2}=a^{2}+4^{2}$
$25=a^{2}+16$
$\begin{aligned} e_{1} & =a^{2} \quad a=3 \\ \sqrt{a} & =\sqrt{a^{2}}\end{aligned} \quad \square$
you con label it a orb but not c

$4 m$

Find the value of the missing side:

$$
4^{2}+3^{2}=c^{2}
$$

$$
16+9=c^{2}
$$

$$
\sqrt{25}=\sqrt{c^{2}}
$$

$$
5=c \quad \therefore \text { c is } 5 \mathrm{~cm}
$$

PRACTICE:

1. Find the value of the missing sides (round to one decimal place where necessary)

2. My neighbour has a square vegetable garden which is 3.5 m by 3.5 m . He wants to put a walkway diagonally through the garden to make it easier to get the veggies in the middle. How long will his walkway be?

$$
\begin{aligned}
(3.5)^{2}+(3.5)^{2} & =\omega^{2} \\
12.25+12.25 & =\omega^{2} \\
24.5 & =\omega^{2} \\
\omega \omega & =4.9
\end{aligned}
$$

3. An emergency boat is on one side of a waterway and there are cries of help on the other side. The waterway is 20 m wide and the boat is about 35 m down the water way from the people in need. What is the distance the boat must travel if they go directly (diagonally) to help?

$$
\begin{aligned}
35^{2}+20^{2} & =c^{2} \\
1225+400 & =c^{2} \\
1625 & =c^{2} \\
\angle c & =40.3
\end{aligned}
$$

HELP! HELP! 35

$$
\therefore \text { It must travel } 40.3 \mathrm{~m}
$$

3. The window of a burning building is 24 metres above the ground. A ladder that is 30 m is angled to reach the window and the base is out from the wall. How far out from the wall is the ladder?

$$
\begin{aligned}
a_{1}^{2}+24^{2} & =30^{2} \\
a^{2}+576 & =900 \\
a^{2} & =324 \\
a & =18 \quad \therefore \text { It's } 18 \mathrm{~m} \text { out. } .
\end{aligned}
$$

4. A 16 m long ladder leans against a house. The foot of the ladder is 7 m from the house. Find the height of the ladder from the ground, correct to the nearest tenth of a meter.

$$
\begin{aligned}
h^{2}+7^{2} & =16^{2} \\
h^{2}+49 & =256 \\
\frac{h^{2}}{} & =207 \\
h & \cong 14.4 \mathrm{~m}
\end{aligned}
$$

Review: Perimeter \& Area of Basic Shapes

SHAPE	PERIMETER	AREA
Rectangle/Square	$\begin{aligned} P & =21+2 w \\ P & =2 \cdot 4+2 \cdot 2 \\ P & =8+4 \\ & =12 m \end{aligned}$	$\begin{aligned} & A=1 \times w \\ & A=4 \times 2 \\ & A=8 m^{2} \end{aligned}$
Triangle	$\begin{aligned} & \mathrm{P}=\mathrm{S}_{1}+\mathrm{S}_{2}+\mathrm{S}_{3} \\ & \mathrm{P}=4.9+3.8+7.5 \\ & \mathrm{P}=16.2 \mathrm{~m} \end{aligned}$	$\begin{aligned} & A=\frac{b \times h}{2} \\ & A=\frac{7.5(2.2)}{2} \\ & A=8.25 \mathrm{~m}^{2} \end{aligned}$
Parallelogram	$\begin{aligned} & \mathrm{P}=\mathrm{S}_{1}+\mathrm{S}_{2}+\mathrm{S}_{3}+\mathrm{S}_{4} \\ & \mathrm{P}=7.2+7.4+7.2+7.4 \\ & \mathrm{P}=29.2 \end{aligned}$	$\begin{aligned} & A=b \times h \\ & A=7.4(6.75) \\ & A=49.95 \mathrm{~cm}^{2} \end{aligned}$
Circle	$\begin{aligned} & C=2 \pi r \text { or } C=\pi d \\ & \mathrm{C}=\pi \cdot 10 \\ & \mathrm{C}=31.4 \mathrm{~cm} \end{aligned}$	$\begin{aligned} & A=\pi \times r^{2} \\ & \mathrm{~A}=\pi \cdot 5^{2} \\ & \mathrm{~A}=78.5 \mathrm{~cm}^{2} \end{aligned}$ * remember the radius is half the diameter.
Trapeziod	$\begin{aligned} & P=a+b+s 1+s 2 \\ & P=10+6+5+4 \\ & P=25 \end{aligned}$	$\begin{aligned} A & =\frac{1}{2}(a+b) h \\ A & =\frac{1}{2}(10+6) \cdot 3 \\ A & =\frac{1}{2} \cdot 16 \cdot 3 \\ & =24 \mathrm{~cm}^{2} \end{aligned}$

Practice: Area and Perimeter
Find the area and perimeter (circumference) of each figure:

$$
P=13+5+13+5
$$

$$
=36 \mathrm{~km}
$$

$$
A=b \times h
$$

$$
=5 \cdot 12
$$

$$
=60 \mathrm{~km}^{2}
$$

$$
\begin{aligned}
A & =\frac{1}{2} \cdot b \cdot h \\
& =\frac{1}{2} \cdot 1^{6} \cdot 9 \\
& =54 \mathrm{~m}^{2}
\end{aligned}
$$

c. Circle

$$
\begin{aligned}
C & =\pi d \\
& =12 \pi \\
& =37.70 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
A & =\pi r^{2} \quad r=6 m \\
& =\pi 6^{2} \\
& =36 \pi \\
& =113.09 \mathrm{~m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
P & =6.3+6.3+8.2+12.6 \\
& =33.4 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
A & =\frac{1}{2}(6.3+12.6) \times 6.3 \\
& =\frac{1}{2}(18.9)(6.3) \\
& =59.5 \mathrm{~m}^{2}
\end{aligned}
$$

ANSWERS: $\mathrm{a} . \mathrm{A}=12.5 \mathrm{~m}^{2}, \mathrm{P}=15 \mathrm{~m}$, b. $\mathrm{A}=54 \mathrm{~m}^{2}, \mathrm{P}=41 \mathrm{~m}, \mathrm{c} . \mathrm{A}=226.08 \mathrm{~m}^{2}, \mathrm{C}=37.68 \mathrm{~m}^{2}$, d. $\mathrm{A}=60 \mathrm{~km}{ }^{2}, \mathrm{P}=36 \mathrm{~km}, \mathrm{e} . \mathrm{A}=59.5 \mathrm{~m}^{2}, \mathrm{P}=33.4 \mathrm{~m}$

More Area \& Perimeter Practice
Find the area and perimeter of the following shapes:
f.

$$
\begin{array}{rlrl}
A & =L \cdot w & : P & =2 \cdot 4+2 \\
& =4 \cdot 2 & & =8+4 \\
& =8 \mathrm{~cm}^{2} ; & =12 \mathrm{~cm}
\end{array}
$$

$$
A=8 \mathrm{~cm}^{2} \quad P=12 \mathrm{~cm}^{2}
$$

i.

$$
\begin{array}{rlrl}
A & =\frac{1}{2} \cdot 3 \cdot 4 & P & =3+4+5_{1}^{1} \\
& =6 \mathrm{~cm}^{2} & & =12 \mathrm{~cm}
\end{array}
$$

$$
A=-6 \mathrm{~mm}^{2} P=12 \mathrm{~cm}
$$

$$
A=30 \mathrm{~cm}^{2} \quad P=30 \mathrm{~cm}
$$

I.

$$
\begin{array}{rlrl}
A & =\frac{8(1.3)}{2} & P & =8 \cdot 2+2.2 \\
& =52 \mathrm{~m}^{2} & & =16+4 \\
& =20 \mathrm{~m}
\end{array}
$$

$$
\begin{array}{rlrl}
A & =\frac{1}{2}(6+8) \cdot 2 & P & =6+2+2.4+7 \\
& =14 \mathrm{~cm}^{2} & & =18.4
\end{array}
$$

$A=113.10 \mathrm{~cm}^{2} \mathrm{P}=37.70 \mathrm{w}$
n.

$$
f^{\circ} \mathrm{cm}
$$

j.

g.

$$
\begin{array}{rlrl}
A & =5 \cdot 3 & P & =2 \cdot 5+2 \cdot 3 \\
& =15 \mathrm{~cm}^{2} & & =10+6 \\
& & =16 \mathrm{~cm}
\end{array}
$$

h.

$$
c=2 \pi r
$$

$$
=2 \cdot \pi \cdot 2
$$

$$
=4 \bar{N}
$$

$$
=12.57
$$

$$
\begin{aligned}
A & =\pi r^{2} \\
& =\pi 2^{2} \\
& =4 \pi \\
& =12.57
\end{aligned}
$$

$$
A=15 \mathrm{~cm}^{2} P=16 \mathrm{~cm}
$$

$$
A=
$$

$$
\begin{aligned}
A=\frac{1}{2} \cdot 5.12 \quad P & =5+12+13 \\
& =30 \mathrm{~cm}
\end{aligned}
$$

$$
A=12.37 \mathrm{~cm}^{2} P=12.57 \mathrm{~cm}^{2}
$$

k.

$$
\begin{aligned}
A & =\pi 6^{2} \\
& =113.10 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
C=\pi d
$$

$$
=12, T
$$

$$
=37.70 \mathrm{~cm}
$$

Area and Perimeter Problems

Complete the table for the circles with the following dimensions/measurements:

	Radius	Diameter	Circumference	Area
o.	7 cm	14 cm	$C=14 \pi=43.98$	$A=\pi(7)^{2}=153.94$
p.	10.5 cm	21 cm	$21 \pi=65.97$	$=\pi(10.5)^{2}=346.36$
q.	2.99	5.99 km	$\frac{T d}{T}=\frac{-18.84}{T} \mathrm{~cm}$	$\pi(2.99)^{2}=28.25$
r..	12	24	$2 \pi \pi=75.40 \mathrm{~cm}$	$\pi r^{2}=\frac{452.39 \mathrm{~m}^{2}}{\pi} \quad r^{2}=144$

s. The world's largest dish radio telescope has a diameter of 305 m . What is the circumference of the telescope?

u.

$$
w \underbrace{2} w+10
$$

Determine the simplified expression for the perimeter of this rectangle

$$
\begin{aligned}
& P=2 \cdot w+2(w+10) \int 4 w+20 \\
& =2 w+2 w+20
\end{aligned}
$$

Determine the simplified expression for the area of this rectangle

$$
\begin{aligned}
A & =\omega(\omega+10) \\
& =\omega^{2}+10 \omega
\end{aligned}
$$

Calculate the value of w if the perimeter is 76 units

$$
\begin{aligned}
4 \omega+20 & =76 \\
4 \omega & =56 \\
\omega & =14
\end{aligned}
$$

t. A pool has a 50-m fence around 3 sides. One side is 14 m and the other sides are equal.
a. How long is each equal side?

b. Fence posts costing $\$ 15.59$ each is placed every 2 m . how much do the posts cost?

v.

Determine the simplified expression for the perimeter of this triangle

$$
\begin{aligned}
P & =2 x+5+3 x-2+x+4 \\
& =6 x+7
\end{aligned}
$$

Determine the simplified expression for the area of this

$$
\begin{aligned}
& \text { triangle } \\
& A=\frac{1}{2} \cdot x \cdot(x+4)=\frac{x(x+4)}{2}-\frac{x^{2}+4 x}{2}
\end{aligned}
$$

Calculate the area if $\mathrm{x}=11$

$$
A=\frac{x(x+4)}{2}=\frac{11(15)}{2}=82.5
$$

