MCR3U1

Date:

Day 1: Reviewing the Exponent Laws

Reviewing the Exponent Laws

a^{m} is a power in exponential form where: \boldsymbol{m} is the exponent $\quad \boldsymbol{a}$ is the base $\quad \boldsymbol{m}$ is a power of base a In expanded form, $\mathrm{a}^{\mathrm{m}}=\mathrm{axaxaxa} \ldots$ (multiply \boldsymbol{a} by itself as many times as given by the value of m , exponent)
To simplify an expression means to leave the final answer in exponential form.]

RULE	EXAMPLE		PRACTICE
1) MULTIPLICATION of POWERS keep the base, add the exponents.	$a^{2} \times a^{5}=a^{7}$		$\begin{aligned} & \text { Simplify }\left(2 a^{2} b^{3}\right)\left(-3 a^{4} b^{6}\right) \\ & =(2)(-3)\left(a^{2}\right)\left(a^{4}\right)\left(b^{3}\right)\left(b^{6}\right) \\ & =-6 a^{2+4} b^{3+6} \\ & =-6 a^{4} b^{9} \\ & =-2 \end{aligned}$
2) DIVISION of POWERS keep the base, subtract the exponents.	$a^{5} \div a^{2}=a^{3}$		$\begin{aligned} \text { Simplify } \frac{27 x^{9}}{3 x^{-6}} & =9 x^{9-(-6)} \\ & =9 x^{9+6} \\ & =9 x^{15} \end{aligned}$
3) POWER of a POWER keep the base, multiply the exponents.	$\left(a^{2}\right)^{5}=a^{10}$		$\text { Simplify } \begin{aligned} & \left(a^{-2}\right)^{-3} \times 3 a^{6} \\ & =a^{-2 \cdot-3} \times 3 a^{6} \\ & =1 \cdot a^{6} \times 3 a^{6} \\ & =3 a^{6+6} \longrightarrow=3 a^{12} \end{aligned}$
4) POWER of a PRODUCT distribute the exponent over the brackets to each term inside. Then apply rule \#3	$\begin{aligned} \left(2 a^{3} b^{2}\right)^{4} & =\left(2^{1}\right)^{4}\left(a^{3}\right)^{4}\left(b^{2}\right)^{4} \\ & =\left(2^{1 \times 4}\right)\left(a^{3 \times 4}\right)\left(b^{2 \times 4}\right) \\ & =2^{4} a^{12} b^{8} \\ & =16 a^{12} b^{8} \end{aligned}$		$\begin{aligned} & \text { Simplify }\left(-2 a^{2} b^{5}\right)^{3} \\ & =(-2)^{3} \cdot\left(a^{2}\right)^{3} \cdot\left(b^{5}\right)^{3} \\ & =-8 \cdot a^{2 \times 3} \cdot b^{5 \times 3} \\ & =-8 a^{6} b^{15} \end{aligned}$
5) POWER of a QUOTIENT same as rule \#4	$\begin{aligned} \left(\frac{a^{3}}{b^{2}}\right)^{3} & =\frac{\left(a^{3}\right)^{3}}{\left(b^{2}\right)^{3}} \\ & =\frac{a^{3 \times 3}}{b^{2 \times 3}} \\ & =\frac{a^{9}}{b^{6}} \end{aligned}$		$\begin{aligned} & \text { Simplify }\left(\frac{12 x^{5}}{4 y^{3}}\right)^{3} \\ & =\left(\frac{3 x^{5}}{y^{3}}\right)^{3} \\ & =\frac{(3)^{3}\left(x^{5}\right)^{3}}{\left(y^{3}\right)^{3}} \end{aligned} \quad=\frac{27 x^{5 \cdot 3}}{y^{3 \cdot 3}}=\frac{27 x^{15}}{y^{9}}$
6) NEGATIVE EXPONENT reciprocate the base, switch the sign of the exponent	$a^{-2}=\frac{1}{a^{2}}$	$\begin{aligned} \left(\frac{2}{3}\right)^{-2} & =\left(\frac{3}{2}\right)^{2} \\ & =9 / 4 \end{aligned}$	$\begin{aligned} & \text { Simplify }\left(\frac{2 x^{3}}{3 y^{2}}\right)^{-3} \\ & =\left(\frac{3 y^{2}}{2 x^{3}}\right)^{3}=\frac{27 y^{2 \cdot 3}}{8 x^{3 \cdot 3}} \\ & =\frac{(3)^{3}\left(y^{2}\right)^{3}}{(2)^{3}\left(x^{2}\right)^{3}} \end{aligned} \quad=\frac{27 y^{6}}{8 x^{9}}$
7) ZERO EXPONENT depending on the sign of the base, it is either equal to 1 or -1	$x^{0}=1$	$-x^{0}=-1$	$\begin{gathered} \text { Simplify }-(\underbrace{14 a^{3} b^{-4}}_{1})^{0} \\ =-1 \end{gathered}$

MCR3U1

Date:

Day 1: Reviewing the Exponent Laws

Ex1. Use the exponent laws to simplify the following. (Remember more than one law can be used to simplify an expression completely.)
a. $\left(4 a b^{4}\right)\left(-5 a^{3} b^{2}\right)$
$=(4)(-5)(a)\left(a^{3}\right)\left(b^{4}\right)\left(b^{2}\right)$
$=-20 a^{1+3} \cdot b^{4+2}$
$=-20 a^{4} b^{6}$
c. $\left(-\frac{1}{2} c^{2} d^{3}\right)^{4}$
$=\left(\frac{-1}{2}\right)^{4}\left(c^{2}\right)^{4}\left(d^{3}\right)^{4}$
$=\frac{1}{16} c^{2 \cdot 4} d^{3 \cdot 4}$
$=\frac{1}{16} c^{8} d^{12}$

$$
\begin{aligned}
& \text { b. }\left(12 b^{2}\right)\left(8 b^{-4}\right) \div\left(6 b^{-10}\right)(10 \text { do multiplic. } \\
& \begin{aligned}
&=(12)(8) b^{2+-4} \div 6 b^{-10} \text { first } \\
&=96 b^{-2} \div 6 b^{-10} \\
&=16 b^{-2-(-10)} \\
&=16 b^{8} \\
& \text { d. } \frac{\left(t^{7}\right)^{3}(t)}{t^{16}}=\frac{t^{7 \cdot 3} \cdot t}{t^{16}} \\
&=\frac{t^{21+1}}{t^{16}} \\
&=t^{22-16} \\
&=t^{6}
\end{aligned}
\end{aligned}
$$

Ex2. Use the laws of exponents to simplify the following:

$$
\begin{aligned}
& \text { a. } \begin{aligned}
\frac{\left(-m^{2} n^{3}\right)^{2}\left(m n^{-4}\right)}{\left(m n^{3}\right)^{4}} & =\frac{(-1)^{2}\left(m^{2}\right)^{2}\left(n^{3}\right)^{2}\left(m n^{-4}\right)}{(m)^{4}\left(n^{3}\right)^{4}} \\
& =\frac{m^{4} n^{6} m n^{-4}}{m^{4} n^{12}} \Rightarrow m^{5-4} n^{2-12} \\
& =\frac{m n^{-10}}{m^{4+1} n^{6+(-4)}} \\
& =\frac{m}{m^{4} n^{12}} \\
& =\frac{m^{5} n^{2}}{m^{4} n^{12}}
\end{aligned} \\
& \text { c. } \frac{\left(3^{4}+2^{6}\right)^{0}}{3^{-1}} \\
& \text { d. } \frac{\left(2^{-1}+4^{-2}\right)}{\left(2^{-2}+4^{-1}\right)}=\frac{8 \cdot \frac{1}{2}+\frac{1}{16}}{\frac{1}{4}+\frac{1}{4}} \\
& =\frac{1}{\frac{1}{3}} \quad \begin{array}{l}
\text { reciprocate } \\
1 / 3
\end{array} \\
& =3 \\
& \text { b. } \begin{aligned}
\frac{x\left(x^{4 a+1}\right)}{x^{a+3}} & =\frac{x^{1+4 a+1}}{x^{a+3}} \\
& =x^{2+4 a-(a+3)} \\
& =x^{2+4 a-a-3} \\
& =x^{3 a-1}
\end{aligned} \\
& =\frac{\frac{8+1}{16}}{\frac{1+1}{4}} \\
& \begin{aligned}
b / c^{2} / 4 & =\frac{\frac{9}{16}}{\frac{1}{2}}+\frac{9}{168} \times \frac{2}{1} \\
& =\frac{9}{16} \div \frac{1}{2}=9 / 8
\end{aligned}
\end{aligned}
$$

