WARM UP: Each bag contains the same number of gold coins. Determine how many coins are in each bag.

Step: Remove 1 beg from BOT TH SIDE S
Sty : Remave 1 stack of coins from BOTH SIDES
Stcq3 : Divide coins between both bags EVENLY.

$$
\begin{aligned}
2 \text { bags } & =18 \text { coins } \\
1 \text { bag } & =18 \div 2 \\
& =9 \operatorname{cons}
\end{aligned}
$$

and
1 stack of 6 coins 4 stacks of 6 cols
SOLVING THE UNKNOWN ALGEBRAICALLY
Determine how many coins are in the bag.
Let ' x ' represent each bag and each coin will have a value of one. LEFT SIDE
Right Sine
1 bag and 2 coins 7 coins 1 bag and 2 coins equal to 7 coins

$$
x+2=7
$$

equation $x+2=7$ to isolate x (bag)

$$
\begin{aligned}
& -2 \text {-2 subtract (remove) } 2 \text { (coins) from } \\
& \text { BOTH sIDES }
\end{aligned}
$$

$$
x=5
$$

\therefore The solution to this equation is 5 .

GOLDEN RULE OF ALGEBRA
PERFORM THE SAME OPERATION(S) TO BOTH SIDES
SOLVING ONE-STEP EQUATIONS
JUST perform the inverse

Solve each of the following equations:

Addition	Subtraction	Multiplication	Division	Square
$x \pm 5=9$	$x-1=3$	$\frac{2 x}{2}=\frac{10}{2}$	$\frac{x}{2}=6$	$\sqrt{x^{2}}=\sqrt{9}$
$x=4$	$+1+1$	$x=5$	$x \div 2 \times 2=6 \times 2$	$x=3$
$x+10=31$	$x=4$	$x-8=2$	$\frac{5 x}{5}=\frac{40}{5}$	$3 \cdot \frac{x}{3}=-2 \cdot 3$
$-10-10$	$+8+8$	$x=8$	$x=-6$	$\sqrt{x^{2}=\sqrt{36}}$
$x=21$	$x=10$	$x=6$		

MPM1D
Day 1: Solving Equations

Date:
Unit 3: Solving Equations

Solve the following equations:

Your Turn

a) $3 x-10=11$
$+10+10$
$\frac{3 x}{3}=\frac{21}{3}$
$x=7$

Your Turn

a) $10-x=22$
$-10 \quad-10$
$\frac{-x}{-1}=\frac{12}{-1}$
$x=-12$

Your Turn

Your Turn

$\begin{array}{ll}\text { a) } 9+\frac{x}{5}=11 & \text { - Subtract } 9 \\ -9 & -9\end{array} \quad$ from both side

$$
\begin{aligned}
& \text { 5. } \frac{x}{5}=2.5 \text { multiply both } \\
& x=10
\end{aligned}
$$

b) $\begin{aligned} 110 & =2-\frac{x}{2} \quad \text { subtract } 2 \\ -2 & -2 \\ 2 \cdot 8 & =\frac{-x}{2} \cdot 2 \text { multiply by } 2\end{aligned}$
$\frac{16}{-1}=\frac{-x}{-1}$ divide by -1
$x=-16$

Your Turn
a) $12+x^{2}=21 \quad *$ subtract 12
$-12 \quad-12$ from both $=$ isles

$$
\begin{array}{ll}
\sqrt{x^{2}}=\sqrt{9} & \text { * square root } \\
\text { both sister }
\end{array}
$$

Your Turn

a) $4 x^{2}-10=26 \leqslant$ add 10 to

$$
\left.\begin{array}{l}
\text { +10 +10 both side } \\
\frac{4 x^{2}}{4}=\frac{36}{4} \quad \text { *divide both } \\
\text { sids by } 4
\end{array}\right] \begin{array}{ll}
\sqrt{x^{2}}=9 & \text { s sq root } \\
x=3 & \text { both sides }
\end{array}
$$

b) $\begin{aligned} 165=-4+x^{2} & \text { add } 4 \text { to both } \\ +4 & +4\end{aligned} \quad$ side

$$
\begin{array}{rlrl}
\sqrt{169} & =\sqrt{x^{2}} & \text { sp coot both } \\
13 & =x & & \text { sides } \\
x & =13 & &
\end{array}
$$

b) $\begin{array}{rl}-306 & =-6-3 x^{2} \\ +6 & * 6\end{array}$ aid s to both

$$
\begin{aligned}
\frac{-300}{-3} & =\frac{-3 x^{2}}{-3} \quad * \div \text { both sides } \\
100 & =x^{2} \quad *-3 \\
10 & =x \\
x & =10
\end{aligned}
$$

PRACTICE

1. Mr. Forster solved the following equation. Explain, using full sentences, what he did to get each line of his solution.

Mr. Forster's Work	What He Did
$15-5 x=10$	Original Question
$-5 x=-5$	Subtracted 15 froM both side)
$x=1$	Disabled both sides by -5

2. Make up an equation with two operations that has a solution of $x=5$.

$$
\begin{array}{rlrl}
2 x-3 & =7 & \text { subtract } 3 \text { from both sides } & \\
2 x & =10 & \text { double both sides of } & x^{2}-5=20 \\
x & =5 & \text { start from the end } & x^{2}=25 \\
& & x=5
\end{array}
$$

3. Mike is currently 8 years older than Janet. Mike's age can be calculated by using the equation below where m represents Mike's age. Calculate their ages.
Step

$$
\begin{array}{r}
m-8=30 \\
+8+8 \\
\frac{2 m}{2}=\frac{38}{2} \\
m=19
\end{array}
$$

THINKING
4. A triangle has a perimeter of 250 cm . The three side lengths are $\mathrm{x}, 2 \mathrm{x}+40$ and $\mathrm{x}+60$. What are the side lengths of this triangle?

$$
\begin{aligned}
\text { Sum of all side } & =\text { perimeter } \\
x+2 x+40+x+60 & =240 \\
x+2 x+x+40+60 & =240 \\
4 x+100 & =240 \\
-100 & -100 \\
\frac{4 x}{4} & =\frac{140}{4} \\
\frac{x}{4} & =35 \mathrm{~cm}
\end{aligned}
$$

\therefore Side x is 35 cm

$$
\text { Side }(2 x+40) \text { is } 2(35)+40=110 \mathrm{an}
$$

$$
\text { Side }(x+60) \text { is } 35+60=95 \mathrm{~cm} \text {. }
$$

