
Warm-Up:
If You Can Multiply: $X(x+2)=x^{2}+2 x$
And You Can Multiply: $3(x+2)=3 x+6$
Then You Can Multiply: $(x+3)(x+2)$ How do you think you do this?

$$
\begin{aligned}
& =x^{2}+2 x+3 x+6 \\
& =x^{2}+5 x+6
\end{aligned}
$$

Are You Afraid You'll Forget???

When multiplying 2 binomials, remember this acronym:

$$
\begin{aligned}
& \text { F-IRST } \quad a \cdot c \\
& \text { O-UTSTIDE } \quad a \cdot d \\
& \text { I- NIDE } \quad b \cdot c \\
& \text { L-AST } \quad b \cdot d
\end{aligned}
$$

Basically:

- multiply each term in the first bracket by each term in the second bracket
- remember: when you multiply terms you multiply the coefficients and add the exponents
- collect like terms if applicable

Examples: Sniffy (aka: expand and collect like terms)

$$
\text { a. } \begin{aligned}
(2 x+3)(x+4)= & (2 x)(x)+(2 x)(4)+(3)(x)+(3)(4) b . \\
= & 2 x^{2}+8 x+3 x+12 \\
& 2 x^{2}+11 x+12
\end{aligned}
$$

c. $\quad(5-32)(3 z-2)=$

$$
\begin{aligned}
& =(5)(3 z)+(5)(-2)+(-3 z)(3 z)+(-3 z)(-2) \\
& =15 z-10-9 z^{2}+6 z \\
& =-9 z^{2}+21 z-10
\end{aligned}
$$

d.

$$
\begin{aligned}
& =(x)(3 x)+(x)(-5 y)+(4 y)(3 x)+(4 y)(-5 y) \\
& =3 x^{2}-5 x y+12 x y-20 y^{2} \\
& =3 x^{2}+7 x y-20 y^{2}
\end{aligned}
$$

Now, let's get more interesting:

$$
\begin{aligned}
& \text { RULE } \quad(x-5)^{2}=(x-5)(x-5) \quad \text { f. } \quad(2 x+3)^{2}=(2 x)^{2}+2(2 x)(3)+(3)^{2} \\
& =4 x^{2}+12 x+9 \\
& =x^{2}-5 x-5 x+25 \\
& =x^{2}-10 x+25
\end{aligned}
$$

Even more exciting:

$$
\begin{aligned}
& =3\left[(2 x)^{2}+2(2 x)(4 y)+(4 y)^{2}\right] \\
& =3\left(4 x^{2}+16 x y+16 y^{2}\right) \\
& =12 x^{2}+48 x y+48 y^{2}
\end{aligned}
$$

1. $\frac{A}{(12 x+3)}-\frac{B /}{(3 x+4)(x-2))}=A-(B)$ Steel: Simplify A and B separately

$$
\begin{array}{lrl}
A \rightarrow(2 x)^{2}+2(2 x)(3)+(3)^{2} & B & =(3 x)(x)+(3 x)(-2)+(4)(x)+(4)(-2) \\
A=4 x^{2}+12 x+9 & & 3 x^{2}-6 x+4 x-8 \\
B & =3 x^{2}-2 x-8
\end{array}
$$

Step 2: $A-(B)$

$$
=x^{2}+14 x+17
$$

j. A square has its length increased by 3 cm and its width reduced by 5 cm . Write an expression for the new area.

Let $x=$ the length of the original square

$$
\begin{aligned}
\text { New length } & =x+3 \quad \text { New width }= \\
\text { New area } & =(x+3)(x-5) \\
& =(x)(x)+(x)(-5)+(3)(x)+(3)(-5) \\
& =x^{2}-5 x+3 x-15 \\
& =x^{2}-2 x-15
\end{aligned}
$$

$$
\text { New width }=x-5
$$

