\qquad
\qquad

Unit Test
 Quadratics I - Vertex Form

Know	App	Think
18	14	8

Communication	Level 1	Level 2	Level 3	Level 4
Correct use of mathematical symbols, labels, and conventions including units of measure, therefore statements, formulas, labels, clarity of solution, show all work.	Few mathematical conventions are used correctly.	Some mathematical conventions are used correctly.	Most mathematical conventions are used correctly.	Mathematical conventions are used correctly.

KNOWLEDGE \& UNDERSTANDING

1. Use the following equation to answer questions I tc V. angle the correct answer.
I. What is the vertex?
C) $(4,-8)$
b) $(-4,-8)$

c) $(-4,8)$
d) $(4,8)$
II. What is the axis of symmetry? \downarrow
III. What is the optimal value?
a) $x=8$
(b) $x=4$
c) $x=-8$
d) $x=-4$
a) $y=8$
b) $y=4$
C) $y=-8$
d) $y=-4$
$3 \times(1,3,5)$
IV. What is the step pattern?
a) 1,3,9
b) $3,6,9$
c) $4,12,20$
(2) $3,9,15$
V. In which direction does the parabola open?
(a) up
b) down

d) right
since $a=+3$ it apens up
2. Looking at the parabola on the right, answer the following questions in the space provided.
a) What is the vertex?
b) What are the coordinates of the zeros (x-intercepts)?
$A(3.5,0) \quad B(6.5,0)$
c) Does the graph have a maximum or a minimum? \max
d) What is the optimal value?
y-coordinate of the vertex if vertex $(5,4)$, then op,vais
e) What is the axis of symmetry? x-coordinate of the vertex

Foupw BEDMAS $(-)^{2}=+\quad-^{2}=-$
\qquad Date: \qquad
3. Complete the following table below. (3)

a) Is this a quadratic or linear relationship? How do you know? (2)

It's quadratic because $2^{\text {nd }}$ differences are equal.
b) Graph the parabola $y=x^{2} \downarrow^{-3}$ from the tabla $/ \sim \chi^{\text {of values above. Label the vertex. }}$

APPLICATION

4. A parabola has a vertex of $(3,4)$ and passes through the point $(5,8)$. What is the equation of the quadratic relation? (3
Stay $y=a(x-h)^{2}+k$
Given

$$
\begin{align*}
& y=9(x-h)+k \quad \text { vertex }(3,4) \tag{3,8}\\
& 8=a(5-3)^{2}+4 \text { ¢ sub }{ }^{2} \text { em } h=3 \quad k=4 \\
& -4=a(2)^{2} \text { DeRMAs step 2 }
\end{align*}
$$

©

$$
\begin{aligned}
& 8-4=a(2)^{2} \text { BEDMAS Steps } \\
& 4=0.4 \\
& \frac{4}{4}=\frac{4 a}{4} \Rightarrow a=1 \\
& \therefore y=a(x-h)^{2}+k \quad \operatorname{sub}^{\prime \prime} a^{\prime \prime}, h^{\prime \prime}, " k " \\
& \therefore y=(x-3)^{2}+4
\end{aligned}
$$

\qquad
\qquad
5. A baseball is hit into the air. Its path can be modeled by the relation $h=-2(d-4)^{2}+36$, where h is the height of the ball and d is the horizontal distance, both in meters.

NOTE: This equation can also be written
What is the vertex of this relation? (1)

b) What do the coordinates of the vertex represent in this situation? (1)

The ball reaches its max height of 16 m when it travels 4 m . horizontally
c) What is the height of the ball when it has travelled a horizontal distance of 8 m ? (2) Hint: sub in $d=8$ and solve for h

$$
\begin{aligned}
& \text { Hint: sub in } d=8 \text { and solve for } h \\
& \begin{aligned}
h & =-2(d-4)^{2}+36 \\
h & =-2(8-4)^{2}+36 \\
& =-2(4)^{2}+36 \\
& =-2(16)+36 \\
& =-32+36 \\
& =4
\end{aligned}
\end{aligned}
$$

\therefore The height is 4 m .
6. Use the step method to plot the equation y $=\widehat{(-2)}(x-3)^{2}+8$ on the grid provided below.
$\left.\begin{array}{|l|l|}\hline \text { Over } 1 & 1 \times \text { value of ' } a \text { ' }=-2 \\ \hline \text { Over } 1 & 3 \times \text { value of ' } a \text { ' }=-6 \\ \hline \text { Over } 1 & 5 \times \text { value of ' } a \text { ' }=-10 \\ \hline\end{array} \quad \begin{array}{l}\text { Vertex } \\ \hline\end{array} 3,8\right)$
a) What are the coordinates of the x-intercepts?

$$
A(1,0) \quad B(5,0)
$$

b) What are the coordinates of the y-intercept?

$$
c(0,-10)
$$

\qquad
\qquad
7. Complete the table.

$$
y=a(x-h)^{2}+k
$$

THINKING
8. True or False: ($1 / 2$ mark each) 4
i. \qquad干 The axis of symmetry must go through the y $x-\infty$ of vertex
ii. \qquad The vertex is always located halfway between the zeroes (if there are zeroes)
iii. The y-coordinate of the vertex is always the same as the optimal value
iv. $\frac{T}{T}$ The axis of symmetry goes through the vertex
v. \qquad The x - coordinate of the vertex is always the same as the axis of symmetry
vi. \qquad $\frac{F}{F}$ A parabola must open up
vii. viii. The y - intercept is always positive The axis of symmetry goes through the origin

9. Suppose you were asked to graph the quadratic relation $y=-\frac{1}{4}(x-9)^{2}+15$. Which graphing method would you use, a table of values or the step method? Explain your reasoning.
10. Give two examples of parabolas in real-life. (2)
teeth mouth, the path of a falling object

$$
\begin{gathered}
\text { rainbow, (cotton dandies, ponies) } \\
\text { joke }
\end{gathered}
$$

