MCR3U1 Day 2: Completing the Square – Vertex & Zeros

Steps	Example #1 $y = -2x^2 - 4x + 3$	Example #2 $y = -5x^2 + 20x + 1$
Common factor the coefficient of the x^2 term from the first two terms. Do not factor out the x.	$= -2(x^{2} + \frac{1}{2}x) + 3$	$y = -5(x^2 - 4x) + 1$
Divide the coefficient of x by 2, and then square it.	$2 \div 2 = (1)^*$	$-4 \div 2 = * -2$ $(-2)^2 = * 4$
Add and subtract that value inside the bracket of the equation two steps above.	$= -2\left(\frac{x^2+2x+1}{Perfect Square Tr}\right) + 3$	$= -5(x^{2} - 4x + 4 - 4) + 1$
Move the last term in the bracket to the outside of the bracket and multiply it with the number in front of the bracket. Add the two constants together.	$= -2(x^{2}+2x+1)+2^{-2}+3$	$=-5(x^2-4x+4)+20+1$
Factor the perfect square trinomial inside the bracket.	$= -2(x+1)^{2}+5$	$=-5(x-2)^{2}+21$
Practice: 1. Convert the following quadratic relations into vertex form: a) $y = -3x^2 - 12x + 7$ b) $y = 2x^2 + 10x$		
$=-3(x^2+4x)+7$	2=2	=2(x2+5x) 5+2=2.5
=-3(x ² +4x+4-4)+7 ²	= 9	$=2(x^{2}+5x+625-625)^{2}=6.25$
3(x2+4x+4)+12+7		$=2(x^{2}+5x+625)-12.5$
$-3(x+2)^{2}+19^{2}$		$=2(x+2\cdot5)^2-12.5$
Vertex (-2,19)		V(-2.5,-12.5)
2. Determine the coordinates of the verter $x^2 + 8x + 22$	ex of each parabola. $x = x^2 - 16x + 44$	$(x) = 5x^2 + 60x + 197$
$= (\chi^{2} + 8\chi) + 23$	$=(x^{-16x})+44$	$= 5(x^{2}-12x) - 187$
$=(\chi^{2}+8\chi+16+6)+23$	$=(x^2-16x+64-64)+4$	$4 = -5(x^2 + 12x + 36 - 36) - 18$
$=(x^2+8x+16)-16+23$	$=(\chi^2 - 16\chi + 64) - 64 + 64$	$44 = -5(x^2 - 12x + 36) + 180 - 181$
$=(x+4)^{2}+7$	$=(X-8)^2-20$	$=-5(x-6)^2-7$
V(-4,7) /	V(8,-20)	V(6, -7)

MCR3U1 Date: Chapter 3: Quadratic Relations

$$\int eq y = a \times \frac{1}{3}, 5$$
3. Graph each parabola by determining:
i) its direction of opening and the y-intercept (from the standard form)
ii) the coordinates of the vertex (by completing the square to obtain the vertex form)
iii) the x-intercepts (factor or use the quadratic formula to solve the expansion $ax^2 + bx + c$).

$$\int \frac{1}{12} \frac{1}{12} \frac{1}{10} \frac{1$$

⋠

4. A ball is kicked into the air. It follows a path given by $h(t) = -4.9t^2 + 8t + 0.4$, where t is the time, in seconds, and h(t) is the height, in metres.

- a) Determine the maximum height of the ball to the nearest tenth of a metre.
- b) When does the ball reach its maximum height?

a)
$$h(t) = -4.9(t^2 - 1.6t) + 0.4$$

 $= -4.9(t^2 - 1.6t + 0.64 - 0.64) + 0.42 = -0.84$
 $= -4.9(t^2 - 1.6t + 0.64) + 2.94 + 0.44$
 $= -4.9(t - 0.8)^2 + 2.98$
b) Vertex (0.8, 2.98)
The ball reaches its max height of 3m
in 0.8 seconds.