

Practice:
$V_{\text {ectex }}(-1,5)$

1. Convert the following quadratic relations into vertex form:
a)

$$
\begin{aligned}
& y=-3 x^{2}-12 x+7 \\
&=-3\left(x^{2}+4 x\right)+7 \quad 4 \div 2=2 \\
&=-3\left(x^{2}+4 x+4-4\right)+7 \\
& 2^{2}=4 \\
&=-3\left(x^{2}+4 x+4\right)+12+7 \\
&-3(x+2)^{2}+19
\end{aligned}
$$

Vertex $(-2,19)$
b)

$$
\begin{aligned}
y=2 x^{2}+10 x & \text { U } \\
= & 2\left(x^{2}+5 x\right) \quad 2=2.5 \\
= & 2\left(x^{2}+5 x+6.25-6.25\right) \\
= & 2\left(x^{2}+5 x+6.25\right)-12.5 \\
= & 2(x+2.5)^{2}-12.5 \\
& V(-2.5,-12.5)
\end{aligned}
$$

2. Determine the coordinates of the vertex of each parabola.
a)

$$
\begin{aligned}
y= & x^{2}+8 x+23 \\
= & \left(x^{2}+8 x\right)+23 \\
= & \left(x^{2}+8 x+16-16\right)+23 \\
= & \left(x^{2}+8 x+16\right)-16+23 \\
= & (x+4)^{2}+7 \\
& V(-4,7)
\end{aligned}
$$

b) $y=x^{2}-16 x+44$

$$
\text { c) } y=-5 x^{2}+60 x-187
$$

$$
=\left(x^{2}-16 x\right)+44
$$

$$
=-5\left(x^{2}-12 x\right)-187
$$

$$
=\left(x^{2}-16 x+64-64\right)+44
$$

$$
=-5\left(x^{2}-12 x+36-36\right)-187
$$

$$
=\left(x^{2}-16 x+64\right)-64+44
$$

$$
=(x-8)^{2}-20
$$

$$
V(8,-20)
$$

Date:
Chapter 3: Quadratic Relations

$$
\text { Steps }=a \times 1,3,5
$$

3. Graph each parabola by determining:
i) its direction of opening and the y-intercept (from the standard form)
ii) the coordinates of the vertex (by completing the square to obtain the vertex form)
iii) the x-intercepts (factor or use the quadratic formula to solve the equation $0=a x^{2}+b x+c$).

$$
\begin{aligned}
& \text { a) } y=1 x^{2}+12 x+25 \rightarrow y \text {-int } a=1 \\
& =\left(x^{2}+12 x\right)+25 \quad x \text { y } \\
& =(x+12 x+36-36)+25 \uparrow \\
& \begin{array}{l}
=(x+6)^{2}-11 \text { melt }(-6,-11) . \\
\left.y=2 x^{2}-8 x-1\right) \rightarrow y \text {.int }
\end{array} \\
& \text { b) } y=2 x^{2}-8 x-1 \rightarrow y \text {.in }
\end{aligned}
$$

$$
\begin{aligned}
& =-3\left(x^{2}-12 x\right)-103 \text { steps }-3,-9,-15 \\
& =-3\left(x^{2}-12 x+36-36\right)-103 \\
& =-3\left(x^{2}-12 x+36\right)+108-103 \\
& =-3(x-6)^{2}+5 \quad \text { V }(6,5)
\end{aligned}
$$

*

4. A ball is kicked into the air. It follows a path given by $h(t)=-4.9 t^{2}+8 t+0.4$, where t is the time, in seconds, and $h(t)$ is the height, in metres.
a) Determine the maximum height of the ball to the nearest tenth of a metre.
b) When does the ball reach its maximunnineignt?
a) $h(t)=-4.9\left(t^{2}-1.6 t\right)+0.4 \quad-1.6 \div 2=-0.8$ $\left.\left.=-4.9\left(t^{2}-1.6 t+0.64-0.64\right)+0.4\right)=0.8\right)^{2}=0.64$ $=-4.9\left(t^{2}-1.6 t+0.64\right)+2.94+0.4$ $=-4.9(t-0.8)^{2}+2.98$
b) $\operatorname{Vertex}(0.8,2.98)$

The ball reaches its max height of $3 m$ in 0.8 seconds.

