DEGREE of POLYNOMIALS

DEGREE of a TERM	DEGREE of a POLYNOMIAL
The \underline{sum} of the exponents of the variables. Ex: What is the degree of: a) x^3 b) x^3y^4 sum of exponents	The bighest degree of its terms. Ex: What is the degree of $x^3y^4 + x^7y$ 1^{s+} term = (3+4) = 7 \therefore degree of pdy
degree of 5 degree of 7	2 term = (7+1)=8 is 8

Try these: Determine the degree of the following:

Ex1: $2x^3 - 5x^2 + 1$	Ex2: $-3x^4y^2z^1$ degree of $(4+2+1)$ 7
Ex3: $3a^{5}b^{4}c^{3} - 10a^{4}b^{3}c^{2} + 3$	Ex4: x ⁴ y ³ degree of (4+3) 7-

ADDING POLYNOMIALS

To add polynomials, this is VERY similar to collecting like terms, you:

- 1. Drop the brackets we are allowed to do this when there is only a PLUS sign between the brackets * this does not work with a subtract sign.
- 2. Identify the like terms
- 3. Rearrange (optional) *remember the sign (+/-) stays with the term
- 4. Add the coefficients *remember the sign (+/-) stays with the term
- 5. Keep the variable the same

Example 1: $(2x^{2} + 3x + 5) + (x^{2} + 2x + 3)$

$= 2x^2 + 3x + 5 + x^2 + 2x + 3$
$= 2x^2 + x^2 + 3x + 2x + 5 + 3$
$= 3x^2 + 5x + 8$

Example 2:

$$(4y^{2}-2y-5) + (-y^{2}+3y+3)$$

= 4y² - 2y - 5 + - y² + 3y + 3
= 4y² - 2y - 5 - y² + 3y + 3
= 3y² + y - 2

Practice: Adding Polynomials

a.
$$(a+1)+(a+1)$$

= $a+1+9+1$
= $a+0+1+1$
= $2a+3-6a+2$
= $2a-6a+3+2$
= $2a-6a+3+2$
= $-4a+5$

c.
$$(4n^{2} + 3n + 1) + (n^{2} + n + 2)$$

= $4n^{2} + 3n + 1 + n^{2} + n + 2$
= $4n^{2} + n^{2} + 3n + n + 2 + 1$
= $5n^{2} + 4n + 3$

$$2a + 3) + (-6a + 2)$$

$$= 2a + 3 - 6a + 2$$

$$= 2a - 6a + 3 + 2$$

$$= -4a + 5$$

d.
$$(-p^2 - 2p + 4) + (3p^2 - 2p - 1)$$

= $-p^2 - 2p + 4 + 3p^2 - 2p - 1$
= $-p^2 + 3p^2 - 2p - 2p + 4 - 1$
= $|2p^2 - 4p + 3|$

Page 1 of 3

e. Find the 'algebraic expression' for the perimeter of the following triangle.

$$P = Sum of all side= x + (x + 3) + (x - 4)= x + x + 3 + x - 4= x + x + x + 3 - 4= 3x - 1$$

ANSWERS a) 2a+2, b) -4a+5, c) 5n²+4n+3, d) 2p²-4p+3 d) P=3x -1

SUBTRACTING POLYNOMIALS

Finding the opposite: What is the opposite of $+5?$ -5	What is the opposite of $-7?$ 7
What is the opposite of x? $-X$	What is the opposite of -3y?
Write the opposites of the following expressions (JUST SWITCH THE SIGN OF EVERY TERM)	
a5x + 4 <u>- 5 x - 4</u>	b. $6x - y = -6x + y$ c. $x + y = -x - y$

TO SUBTRACT POLYNOMIALS, YOU CANNOT DROP THE BRACKETS!

If you drop the brackets, only the first term of the second bracket will be subtracted \rightarrow *the entire bracket* following the minus sign needs to be subtracted.

RULE:

1

1. We need a + between the brackets in order to remove the brackets. We can change the – to a +, if we also change everything in the following bracket to 'the opposite'. This is known as **ADDING THE OPPOSITE** (the additive inverse).

Then it is the same as adding polynomials!

- 2. Drop the brackets we are allowed to do this when there is only a PLUS sign between the brackets * this does not work with a subtract sign.
- 3. Identify the like terms
- 4. Rearrange (optional) *remember the sign (+/-) stays with the term
- 5. Add the coefficients *remember the sign (+/-) stays with the term
- Keep the variable the same

Example 1

$$(2x2 + 3x + 5) - (x2 + 2x + 3)$$

= 2x² + 3x + 5 + (- x² - 2x - 3)
= 2x² + 3x + 5 - x² - 2x - 3
= 2x² - x² + 3x - 2x + 5 - 3
= x² + x + 2

Example 2

$$(4y^{2}-2y-5)-(-y^{2}+3y+3)$$

= 4y²-2y-5+(+y²-3y-3) Every sign of 2nd poly switched
= 4y²-2y-5+y²-3y-3
= 5y²-5y-8

PRACTICE: SUBTRACTING POLYNOMIALS

a.
$$(a+5)-(2a+1)$$

 $= (a+5)+(-2a-1)$
 $= a+5-2a-1$
 $= a-2a+5-1$
 $= -a+4$
c. $(n^2+3n+1)-(n^2+n+2)$
 $= n^2+3n+1+(-n^2-n-2)$
 $= n^2+3n+1+(-n^2-n-2)$
 $= n^2+3n+1+(-n^2-n-2)$
 $= n^2+3n+1+(-n^2-n-2)$
 $= n^2+3n+1+(-n^2-n-2)$
 $= n^2+3n+1+(-n^2-n-2)$
 $= n^2-2p+4)-(3p^2-2p-1)$
 $(-p^2-2p+4)+(-3p^2+2p+1)$
 $= -p^2-3p^2-2p+2p+4+1$
 $= -p^2-3p^2-2p+2p+4+1$
 $= -4p^2+5$
f. $(4g^2-g+7)-(-2g-4)$
 $= (4g^2-g+2)+7+4y$
 $= 3m-4m+3+2$
 $= -m+5^{-1}$
g. $(3m^2-2m)-(5m+9)+4m$
 $= (3m^2-2m-5m-9)+4m$
 $= 3m^2-2m-5m-9+4m-9$
 $= 3m^2-2m-5m+4m-9$
 $= -m-3m-7-9$
 $= -(m-1)b$

i. Find an algebraic expression for the length of AB in the following diagram.

