Common Factoring

Warm-Up: The area of a park is given by the expression $16 x^{2}-4 x$. If the length is given by the expression $4 x$, what is an expression for the width?

Recall: $\mathrm{A}=\mathrm{L} \times \mathrm{W}$

$$
\begin{aligned}
\frac{16 x^{2}}{4 x}-\frac{4 x}{4 x} & =\frac{4 x \cdot W}{4 x} \\
4 x-1 & =W \quad \therefore \text { width is } 4 x-1
\end{aligned}
$$

Greatest Common Factor (GCF)

- product of
(1) greatest integer that divides both coefficients
(2) common variables) with the lowest exponent

Example: Consider: $16 x^{3} y^{5} z$ and $24 x^{6} y^{4}$

$$
\text { The GCF is } 8 x^{3} y^{4}
$$

To Common Factor:

- determine the GCF
- DIVIDE the polynomial by the GCF (gives the quotient)
- write as a product: $\operatorname{GCF}\left(\frac{1^{s t} \text { term }}{6 C F}+\frac{2^{n d} \text { term }}{6 C F}+\frac{3^{r d} \text { term }}{6 C F}\right)$

Example 1: Factor $15 x^{2}+10 x$

$$
=5 x\left(\frac{15 x^{2}}{5 x}+\frac{10 x}{5 x}\right) \Rightarrow 5 x\left(3 x^{2-1}+2 x^{1-1}\right) \Rightarrow 5 x(3 x+2)
$$

Example 2: Factor $-16 x^{4}-24 x^{3}+8 x^{2}$

$$
=-8 x^{2}\left(\frac{-16 x^{4}}{-8 x^{2}}-\frac{24 x^{3}}{-8 x^{2}}+\frac{8 x^{2}}{-8 x^{2}}\right)=8 x^{2}\left(2 x^{4-2}+3 x^{3-2}-1 \cdot x^{2-2}\right)=8 x\left(2 x^{2}+3 x-1\right)
$$

Example 3: Factor $9 x^{2}+6 x+15$
$(G C F=3$

$$
\begin{aligned}
& =3\left(\frac{9 x^{2}}{3}+\frac{6 x}{3}+\frac{15}{3}\right) \\
& =3\left(3 x^{2}+2 x+5\right)
\end{aligned}
$$

Common Factoring by Grouping

- If there are 4 terms, you may be able to common factor them in pairs

$$
\text { GCF:4 } \quad \text { CF: } 5
$$

Example 1: Factor $\underbrace{4 x^{3}+20 x^{2}}+\underbrace{5 x+25}$

$$
\begin{aligned}
& =4 x^{2}\left(\frac{4 x^{3}}{4 x^{2}}+\frac{20 x^{2}}{4 x^{2}}\right)+5\left(\frac{5 x}{5}+\frac{25}{5}\right) \\
& =4 x^{2}(x+5)+5(x+5) \\
& =(x+5)\left(4 x^{2}+5\right)
\end{aligned}
$$

Common factor the first 2 and the second 2 terms in pairs
The 2 binomials in brackets should be equal!
Common factor the binomial in brackets

Example 2: Factor $\frac{14 \mathrm{~m}^{3}-21 \mathrm{~m}^{2}}{6 \mathrm{CF}: 7 \mathrm{~m}^{2}}+\frac{12 \mathrm{~m}-18}{6 \mathrm{CF}: 6}$

$$
\begin{aligned}
& =7 m^{2}\left(\frac{14 m^{3}}{7 m^{2}}-\frac{21 m^{2}}{7 m^{2}}\right)+6\left(\frac{12 m}{6}-\frac{18}{6}\right) \\
& =7 m^{2}(2 m-3)+6(2 m-3) \\
& =(2 m-3)\left(7 m^{2}+6\right)
\end{aligned}
$$

Example 3: Factor $2 k^{3}-7 k^{2}-4 k+14$

$$
\begin{aligned}
& =k^{2}\left(\frac{2 k^{3}}{k^{2}}-\frac{7 k^{2}}{k^{2}}\right)-2\left(\frac{-4 k}{-2}+\frac{14}{-2}\right) \\
& =k^{2}(2 k-7)-2(2 k-7) \\
& =(2 k-7)\left(k^{2}-2\right)
\end{aligned}
$$

Example 4: Factor $14 v^{3}-2 v^{2}+7 v-1$

$$
\begin{aligned}
& =2 v^{2}\left(\frac{14 v^{3}}{2 v^{2}}-\frac{2 v^{2}}{2 v^{2}}\right)+(7 v-1) \\
& =2 v^{2}(7 v-1)+(7 v-1) \\
& =(7 v-1)\left(2 v^{2}+1\right)
\end{aligned}
$$

