\qquad

CONGRUENT TRIANGLES

If one shape can become another using Turns, Flips and/or Slides, then the shapes are Congruent. In other words, two geometric figures are congruent when they have exactly the same size and shape.

ROTATION / TURN

REFLECTION / FLIP

TRANSLATION/SLIDE

After any of those transformation (turn, flip or slide), the shape still has the same size, area, angles, and line lengths.
The symbol used for congruence is ' '.
For example, the sentence ' $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$ ' is read as 'triangle ABC is congruent to triangle DEF '

How to Find if Triangles are Congruent

CPCTC: When reporting congruences, you must do so in a way that 'matches up' corresponding parts.
For example, when you report that $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$, then all of the following are true:

- $\angle A=\angle D$
- $\angle \mathrm{B}=\angle \mathrm{E}\left\{\begin{array}{c}\text { corresponding to angl } \\ \text { angles }\end{array} \angle D\right)$
- $\angle C=\angle F$ angles
- $\mathrm{AB}=\mathrm{DE}$ (recall that AB represents the distance from AA to BB)
- $\mathrm{AC}=\mathrm{DF}$
- $\quad \mathrm{BC}=\mathrm{EF}$

This property will be referred to as 'CPCTC':
 $\mathbf{C o r r e s p o n d i n g} \mathbf{P}_{\text {arts of }} \quad \mathbf{C o n g r u e n t} \mathbf{T}_{\text {triangles are }} \quad \mathbf{C o n g r u e n t .}$

In this congruence $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$:
vertex A corresponds to vertex D.
Vertex B corresponds to vertex E.
Vertex C corresponds to vertex F.
The congruence can be reported in any way that preserves this correspondence between the vertices. For example, here are two other correct ways that the congruence could be reported:
$\triangle \mathrm{BAC} \cong \triangle \mathrm{EDC}$ or $\Delta \mathrm{CBA} \cong \triangle \mathrm{FED}$.
However, $\triangle \mathrm{BAC} \cong \triangle \mathrm{DEF}$ is $\boldsymbol{n o t}$ a correct way to report the congruence indicated above.
For more information check http://www.onemathematicalcat.org/Math/Geometry_obj/triangle_congruence.htm

METHODS TO FIND OUT CONGRUENCY

1. SSS (side, side, side) SSSH SASSY AAS HLY ASAP

2. SAS (side, angle, side)

3. AAS (angle, angle, side)

4. HL (hypotenuse, leg)

HL stands for "Hypotenuse, Leg. This one applies only to right angled-triangles!

5. ASA (angle, side, angle)

ASA stands for "angle, side, angle" and means that $\begin{aligned} & \text { we have two triangles } \\ & \text { where we know two } \\ & \text { angles and the } \\ & \text { included side are } \\ & \text { equal. }\end{aligned}$

For example:

is congruent
to:

EXAMPLE \#1:
Are these triangles congruent? Which congruence sufficiency condition applies?
a) State the congruency statement.
ie. $\Delta A B C \cong \triangle D E$
SSS (side, side and side)

EXAMPLE \#2:
$\Delta \mathrm{NPQ} \cong \triangle \mathrm{RST}$. State the values of x, y, and z .

$$
\begin{array}{cc}
\angle N=\angle R & P Q=S T \quad 5=y \\
\angle P=\angle S & X=50^{\circ} \\
\angle Q=\angle T & N Q=R T \\
& N P=R S \\
& z=8 \mathrm{~cm} \\
\therefore & x=50^{\circ} \\
y=5 \mathrm{~cm} \\
z=8 \mathrm{~cm}
\end{array}
$$

EXAMPLE \#3:
$\Delta \mathrm{EFG} \cong \triangle \mathrm{HJK}$. State the values of x, y, and z .

$$
\begin{array}{lr}
\angle E=\angle H & 80=\angle H \\
\angle F=\angle J & \angle F=62^{\circ} \\
\angle G=\angle K & 80+62+x=180 \\
x=38^{\circ} \\
y=6 \mathrm{~cm} \\
Z=96 \mathrm{~cm}
\end{array}
$$

 evidence.
$\angle z=100^{\circ}$ (vertically opp. angles)
$\angle y=40^{\circ}$ (alternate angles on parallel lines)
b) Determine the values of x, y, and z .

AAS condition applies

$$
\begin{aligned}
\triangle A B E & \simeq \triangle C D E \\
B E & =D E \\
3.2 & =x
\end{aligned} \quad \therefore \quad \begin{aligned}
& x=5.2 \mathrm{~cm} \\
& y
\end{aligned}
$$

