11 Academic
Day 2: Relations and Functions

Date:
Unit 1: Intro to Functions

INVESTIGATE:

The ages and soccer practice of four students are listed.

Student	Age	Soccer Practice Day
Jay	15	Tuesday
Joe	16	Tuesday
Jen	15	Thursday
Jill	17	Saturday

For each of the given relations, state the domain and range and then determine whether or not the relations are functions.
a) students and the day for soccer practice
b) ages and the day for soccer practice

KEY WORDS

Ordered Pairs: Use braces $\}$ to list the values, or elements, in a set. $\{(1,3),(2,5)\}$
Domain: the set of all values of the independent variable (x) of a relation.

Range: the set of all values of the dependent variable (y) of a relation.

Relation: a set of ordered pairs; values of the independent (x) variable are paired with values of the dependent (y) variable.

Function: a relation where each value of the independent variable corresponds with only one value of the dependent variable.

Method 1: ORDERED PAIRS (Set Notation)

a) students and the day for soccer practice

Write the relation as a set of ordered pairs.
$\left.\begin{array}{l}\left\{\begin{array}{l}(J a y, \\ \text { (Joe, Tuesday), Tuesday), }\end{array}\right\} \text { RELATION } 10 \text {, Thus day) }\end{array}\right\}$
(Jon, Thursolay), between
(Jill, Saturday) $\} \quad \begin{aligned} & \text { Students and } \\ & \text { Proctice day }\end{aligned}$
Read the definition of domain and range. List below.
Domain $=\{$ Jay, Joe, Ten, Jill $\}$
Range $=\{$ Tuesday, Thursday, Saturday $\}$

Read the definition of relation and function.

Conclusion: Is this relation a function? Justify.
This relation is a function because each independent value (kids) correspond to only one value of dependent (day) If one of the kids had a soccer practice on two different days, it would not be a function.
b) ages and the day for soccer practice

Write the relation as a set of ordered pairs.
$\{(15$, The $),(16$, Tue $),(15$, Thu $),(17$, Set $)\}$

$$
\begin{aligned}
& \text { Relation between } \\
& \text { ages and practice day }
\end{aligned}
$$

Read the definition of domain and range. List below.
Domain $=\{15,16,17\}$
Range $=\{$ Tue, Thus Sat $\}$

Read the definition of relation and function.

Conclusion: Is this relation a function? Justify.
This relation is not Q function because there is a repeating " x " value.

Same "x" cannot match with different "Y" values.

11 Academic
Day 2: Relations and Functions

Date:
Unit 1: Intro to Functions

Method 2: MAPPING DIAGRAM

a) students and the day for soccer practice google "mapping diagram" and drew the mapping diagram of the relation below.

Domain $=\{J a y, J x, J e n, J i \|\}$
Range $=\{$ Tue, Thu, Sot $\}$
Conclusion: Is this relation a function? Justify.
The relation between students and practice dol is a function each "x" value matches with Only one " y " value
b) ages and the day for soccer practice google "mapping diagram" and drew the mapping diagram of the relation below.

Domain $=\{15,16,17\}$
Range $=\left\{T_{v e}, T h \nu, S_{p}+\right\}$
Conclusion: Is this relation a function? Justify. It's not a function beaux " x " value (15) motches with two different y valve.

Method 3: GRAPHING (Vertical Line Test)

VLT: If any vertical line intersects the graph of a relation more than once, then the relation is not a function .

Method 4: EQUATION
If a relation is a function, substituting any value for x will result in only one value of y. Do you think all of the following relations are functions?
a) $y=2 x+1$

Test $x=0$

$$
\left.\begin{array}{l}
=2(0)+1 \\
y=1
\end{array}\right\} \begin{aligned}
& \text { Linear } \\
& \text { illation }
\end{aligned} \text { when } x=0 \quad y=1
$$

$$
\text { b) } \begin{array}{rlrl}
x^{2}+y^{2} & =25 \quad \text { Text } x=0 \\
0^{2}+y^{2} & =25 & \\
\sqrt{y^{2}} & =\sqrt{25} \quad \begin{array}{l}
\text { square root } \\
\text { each side }
\end{array} \\
y & = \pm 5
\end{array}
$$

c) $y=2 x^{2}-3 x+1 \rightarrow$ this is a
$=2(0)^{2}-3(0)+1 \quad$ quadratic relation.
when $x=0 \quad y$ is either -5 or +5 $y=1$ when $x=0 \quad y=1$ therefore, this relation is not a function Function
RIGHT PRACTICE MAKES PERFECT

1) Looking at these graphs, which ones are functions?

2) State if the following set of ordered pairs is a relation or function? Justify.
b) $\{(1,3),(2,4),(3,5),(4,6)\}$
b) $\{(\underline{\underline{1}}, 3),(\underline{\underline{1}}, 4),(2,5),(3,6)\}$

Check for repeation " x " values
Function
"1" matches with 3 and 4 . Not function.
3. Use the mapping diagram:
a) write the set of ordered pairs of the relation
b) state if the relation is a function

$\{(1,-5),(2,-1),(3,-5),(4,0),(5,0),(6,5),(7,8)\}$
ii)

$\{(2,1),(2,2),(5,3),(8,7),(11,5),(14,4),(4,2,2)\}$

Domain $=\{1,2,3,4,5,6,7\}$
Range $=\{-5,-1,0,5,8\}$
Function, one " x " matches "ore " y "

Domain $=\{2,5,8,11,14\}$
Range $=\{1,2,3,4,5,6,7\}$
This is not a function beaux thecere repeating " x " valves such as 2 and 14
4. Draw a mapping diagram of $y=5$ with a domain of $D=\{1,2,3,4,5,6\}$. Is this a function?

It's ofunction because each " x " value matches withe only one " y " value

5. Draw a mapping diagram of $x=3$ with a range of $R=\{1,2,3,4,5,6\}$. Is this a function?

If's not a function becoux " x " value mooches with more than one " y " value.
6. Make an example of a mapping diagram of a function, and one that is not a function.

b/c I motiles with two " y "s
7. Draw an example of a graph that is a function and one that is not a function.

