INVESTIGATE:

The ages and soccer practice of four students are listed.

Student	Age	Soccer Practice Day
Jay	15	Tuesday
Joe	16	Tuesday
Jen	15	Thursday
Jill	17	Saturday

For each of the given relations, state the **domain** and **range** and then determine whether or not the **relations** are **functions**.

- a) students and the day for soccer practice
- **b**) ages and the day for soccer practice

KEY WORDS

Ordered Pairs: Use braces $\{\}$ to list the values, or elements, in a set. $\{(1,3), (2,5)\}$

Domain: the set of all values of the independent variable (x) of a relation.

Range: the set of all values of the dependent variable (y) of a relation.

Relation: a set of ordered pairs; values of the independent (x) variable are paired with values of the dependent (y) variable.

Function: a relation where each value of the independent variable corresponds with only **one** value of the dependent variable.

Method 1: ORDERED PAIRS (Set Notation)			
a) students and the day for soccer practice Write the relation as a set of ordered pairs. (Jay, Tuesday), (Joe, Tuesday), (Jen, Thursday), (Jill, Saturday), Day Students and proctice day	b) ages and the day for soccer practice Write the relation as a set of ordered pairs. {(15, Tue), (16, Tue), (15, Thu), (17, Set)} Relation between ages and prodice day		
Read the definition of domain and range. List below. Domain = { Jay, Joe, Jen, Jill } Range = { Tuesday, Thursday, Saturday }	Read the definition of domain and range . List below. Domain = { 17 , 16 , 17 } Range = { Tue , $Thug$ Sat 3		
Read the definition of relation and function. Conclusion: Is this relation a function? Justify. This relation is a function because each independent value (Lids) correspond to only one value of dependent (days) If one of the Lids had a soccer practice on two different days, it would not be a function.	Read the definition of relation and function. Conclusion: Is this relation a function? Justify. This relation is not a function because there is a repeating "x" value. Same "x" cannol match with different "y" value.		

Method 2: MAPPING DIAGRAM

Method 3: GRAPHING (Vertical Line Test)

VLT: If any vertical line intersects the graph of a relation more than once, then the relation is not a function .

"All functions are <u>relations</u>, but not all relations are functions."

Method 4: EQUATION

If a relation is a function, **substituting** any value for x will result in only one value of y. Do you think all of the

following relations are functions?

b)
$$x^2 + y^2 = 25$$
 Text $x = 0$
 $0^2 + y^2 = 25$
 $\int y^2 = 25$ square root
each side
 $y = \pm 5$
When $x=0$ y is either -5 or ± 5
therefore, this relation is not a function

RIGHT PRACTICE MAKES PERFECT

1) Looking at these graphs, which ones are functions? 4 2 2 0 ю n .4 0 2 ÷2 2 2 0 0 2 4

2) State if the following set of ordered pairs is a relation or function? Justify. b) $\{(1,3), (2,4), (3,5), (4,6)\}$ b) $\{(1,3), (1,4), (2,5), (3,6)\}$ Check for repeation "x" values "I" motches with 3 and 4. Not function. Function

- **3.** Use the mapping diagram:
 - a) write the set of ordered pairs of the relation
 - b) state if the relation is a function

4. Draw a mapping diagram of y = 5 with a domain of $D = \{1, 2, 3, 4, 5, 6\}$. Is this a function?

5. Draw a mapping diagram of x = 3 with a range of $R = \{1, 2, 3, 4, 5, 6\}$. Is this a function?

HOMEWORK: Complete p.10 #1, 2, 3, 4, 5, 7 and 9