Introducing... The Parabola
The graph of a quadratic_ relation is called a parabola. The parabola has some
important features:

Everything you ever wanted to know about parabolas...

Parabolas can open \qquad UP or \qquad Down
$>$ The \qquad zero of a parabola is where the graph \qquad crosses the x - axis
> " \qquad " can also be called " \underline{X} - \qquad i \qquad " or " \qquad roots
$>$ The axis of \qquad symmetry divides the parabola into two equal halves
\qquad Vertex of a parabola is the point where the \qquad axis of symmetry and the parabola \qquad meet. It is the point where the parabola is at its \max \qquad or \qquad value.
> The optimal value is the value of the y coordinate of the vertex $>$ The y-intercept of a parabola is where the graph crosses the y - axis_

ANALYZING PARABOLAS

For the following parabolas, fill in the table which follows.

Vertex	$(3,1)$	$(-1,-4)$	$(-3,5)$
Optimal Value	1	-4	5
Axis of Symmetry	$x=3$	$x=-1$	$x=-3$
Zeroes	none	$(-3,0)$ and $(1,0)$	$\sim\left(5 d^{\circ} \text { ond } \sim(-0.8,0)\right.$
Direction of Opening	LIP	\uparrow	\downarrow
y - intercept	(0,7)	$(0,-3)$	$(0,-4)$

True or False... (use the above for answers)

The axis of symmetry goes through the y-intercept.

The vertex is always located halfway between the zeroes.
The y-coordinate of the vertex is always the same as the optimal value.
A parabola must always have at least one x -intercept.
The x - coordinate of the vertex is always the same as the axis of symmetry.
A parabola must open up.
F
The y-intercept is always positive.

Parabola Practice

1. Complete the analysis for each of the following parabolas

2. Sketch the parabola graph associated with each set of analysis shown.

3. Why are the x-intercepts called zeroes? D / c of these points the y values are O s.
