Mid po int Mon io
Go to 300math.weebly.com
Click Start "Discovering Midpoints"

Task 1: The Midpoint Formula
VERTICAL LINE SEGMENTS
What is the midpoint of the line segment $A B$?
A $(-6,9)$
B $(-6,3)$

$$
M(-6,6)
$$

How can the midpoint be determined using a mathematical calculation instead of counting the number of squares?
Answer:
The only coordinate that changes is " y "

$$
\begin{aligned}
M(x, y) & =\left(-6, \frac{9+3}{2}\right) \\
& =(-6,6)
\end{aligned}
$$

HORIZONTAL LINE SEGMENTS
What is the midpoint of the line segment $A B$?
$A(2,1)$
$B(8,1)$

$$
M(5,1)
$$

How can the midpoint be determined using a mathematical calculation instead of counting the number of squares?
Answer: y-remains the same average

$$
\begin{aligned}
M(x, y) & =\left(\frac{2+8}{2}, 1\right) \\
& =(5,1)
\end{aligned}
$$

DIAGONAL LINE SEGMENTS
What is the midpoint of the line segment $A B$?
A $(3,2)$
$B(7,8)$
First, find the middle of x values

$$
\frac{3+7}{2}=\frac{10}{2}=5
$$

Next, find the middle of y values

$$
\frac{8+2}{2}=\frac{10}{2}=5
$$

Midpoint $=(\underline{5}, \underline{5})$
Summary: The midpoint of a line segment con be found by determining the average of x^{\prime} s and the average of the y^{\prime}

$$
\begin{aligned}
& \text { Formula for the Midpoint of a Line Segment: } \\
& \text { midpoint }=\left(\begin{array}{c}
\text { average of } \\
x \text { values }
\end{array}, \begin{array}{c}
\text { average of } \\
y \text { values }
\end{array}\right) \\
& \text { midpoint }=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
\end{aligned}
$$

Task 2: Practice

- Complete the 5 practice examples in Discovering Midpoints.

Task 3: Application

M is the midpoint of line segment $U P$. The coordinates of U are $(-2,3)$ and the coordinates of M are (1 ,
o). Find the coordinates of P.

$$
\begin{aligned}
& \text { midpoint } M_{U P}=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& (1,0)=\left(\frac{-2+x}{2}, \frac{3+y}{2}\right) \\
& 2 \cdot 1=\frac{-2+x}{2} \cdot 2 \\
& 2=-2+x^{+2} \\
& x=4
\end{aligned}
$$

$$
\therefore P(4,-3)
$$

