## DETERMINING ANGLES IN RIGHT TRIANGLES

RECALL the three primary trigonometry ratios.

$$\sin \theta = \frac{\text{OPPOSITE}}{\text{HYPOTENUSE}}$$

$$\cos \theta = \frac{\textbf{ADJACENT}}{\textbf{HYPOTENUSE}}$$

$$\tan \theta = \frac{\mathbf{OPPOSITE}}{\mathbf{ADJACENT}}$$

For every trigonometry ratio there is an **INVERSE** ratio. It is used to calculate **ANGLES**.

Inverse ratios are usually found on a scientific calculator by using the 2<sup>nd</sup>F, INV, or SHIFT key

#### **KEY WORDS**

Opposite/Hypotenuse Adjacent/Hypotenuse Opposite/Adjacent Inverse

Sin-1

Cos-1 Tan-1

acute

measure

two

#### CASE A) DETERMINING THE ANGLE WITH INVERSE RATIO

**Solved Example**: Calculate the angles given. Round your answer to whole degree.

$$\sin\theta = 0.667$$

\*swap 
$$\theta$$
 with 0.667

$$\sin^{-1} 0.667 = \theta$$
$$\theta - \Delta$$

$$\theta = 4$$

**Example**: Calculate each of the angles given. Round your answer to whole degree.

a) 
$$\cos \theta = 0.667$$

b) 
$$\tan \theta = 0.667$$

## CASE B) DETERMINING THE ANGLE FROM THE TRIANGLE

To find the measure of a(n) Q C Q angle in a right-angle triangle, it is necessary to have the  $\underline{M}$  Q C Q C Q C C of any sides of the triangle.

## 3 Steps to Solving ANGLES

- Step 1: <u>Label</u> the sides of your triangle relative to the angle you want to find
- **Step 2**: Determine which trig ratio to use (sin, cos, tan)
- Step 3: Set up the equation with the unknown and solve using the *inverse* trig ratio (sin<sup>-1</sup>, cos<sup>-1</sup>, or tan<sup>-1</sup>).

**Solved Example:** Determine the angle shown to the nearest degree.

# Step 1:





Step 2: with sides O and A we calculate tan ratio

Step 3: 
$$\tan \theta = \frac{6}{9}$$

\*swap 6/8 with 
$$\theta$$

$$\tan^{-1}\frac{6}{8} = \theta$$

 $\therefore$  Angle  $\theta$  is approximately 37°.

### **PRACTICE**

**Example**: Find each of the angles shown, rounded to one decimal place.

a) Find  $\angle C$ 









- 1. Evaluate each of the following to the nearest degree.
  - a)  $\sin a = 0.34$ Sir 0.34 = 0 =) q = 20° d)  $\sin d = 0.951$
  - 610-10.951 =d d=72°
- b)  $\cos b = 0.5$ CO5 0.5 = 6
- e)  $\cos e = 0.574$ cos 1 0.574= e
- $\tan c = 0.466$ tan-10.466 = C
  - $\tan f = 0.268$

2. Find each of the angles shown. Round to one decimal.













3. Find the length of side x to the nearest tenth of a metre and of angle  $\theta$  to the nearest degree.







- Based on the following diagram use the values given to find the missing angles indicated.
  - a) a = 55 m, b = 137 m  $\rightarrow$  find  $\angle A$ ,  $\angle B$
  - b) a = 235 cm, c = 268 cm  $\rightarrow$  find  $\angle A$ ,  $\angle B$
  - c)  $b = 21 \text{ mm}, c = 40 \text{ mm} \rightarrow \text{find } \angle A, \angle B$
  - d)  $a = 30 \text{ cm}, b = 285 \text{ cm} \rightarrow \text{find } \angle A, \angle B$



$$\Rightarrow t_{\alpha} \bar{n}^{-1} \left( \frac{55}{137} \right) = \alpha \Rightarrow \alpha = 22^{\circ}$$

$$\frac{\Theta = 90 - 22}{\Theta = 68^{\circ}}$$

$$\sin q = \frac{235}{268}$$
 =  $\sin q = \frac{235}{268} = 4$  =  $a = 61$ 

$$\cos \alpha = \frac{21}{40} \Rightarrow \cos^{-1}\left(\frac{21}{40}\right) = \alpha \Rightarrow \alpha = 58^{\circ}$$

$$ton^{-1}\left(\frac{30}{285}\right) = 4$$