## **Primary Trigonometry Ratios – Finding Angles**

RECALL the three primary trigonometry ratios.

$$\sin \theta = \frac{OPP}{HYP} \qquad \cos \theta = \frac{ADJ}{HYP} \qquad \tan \theta = \frac{OPP}{ADJ}$$

For every trigonometry ratio there is an <u>inverse</u> ratio. It is used to calculate **ANGLES**. Inverse ratios are usually found on a Scientific calculator by using the 2<sup>nd</sup>F, INV, or SHIFT key

The inverse for  $\sin$  is:  $\frac{5 \cdot 1}{1000}$  The inverse for  $\cos$  is:  $\frac{1}{10000}$  The inverse for  $\tan$  is:  $\frac{1}{100000}$ 

**Example:** Calculate each of the angles given. Round to one decimal place.

- a)  $\sin \theta = 0.667$
- b)  $\cos \theta = 0.667$
- c)  $\tan \theta = 0.667$  $to\bar{n}'(0.667) = 0.667$

To find the measure of a(n) angle in a right angle triangle, it is necessary to have the  $\frac{measure}{m}$  of any  $\frac{1}{m}$  sides of the triangle.

## 3 Steps to Solving ANGLES

Step 1: Label the sides of your triangle relative to the angle you want to find

Step 2: Determine which trig ratio to use (sin?, cos?, tan?)

Step 3: Set up the equation with the unknown and solve using the inverse trig ratio (sin-1, cos-1, or tan-1).

**Example:** Find each of the angles shown, rounded to one decimal place.

a) Find  $\angle C$  A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A = 0 A =





## Primary Trigonometry Ratios – Angles Practice

- 1. Evaluate each of the following to the nearest degree.
  - a)  $\sin a = 0.34$   $\sin a = 0.34$   $\sin a = 0.34$   $\cos a = 0.34$  $\cos a = 0.34$
- b)  $\cos b = 0.5$   $\cos^{-1}(0.5) = b$



- d)  $\sin d = 0.951$   $\sin (0.951) = d$ d = 72
- e)  $\cos e = 0.574$   $\cos '(0.574) - e$  $e = 55^{\circ}$
- tan f = 0.268 to 5' (0.268) = f  $/ f = 15^{\circ}$
- 2. Find each of the angles shown. Round to one decimal.











3. Find the length of side x to the nearest tenth of a metre and of angle  $\theta$  to the nearest degree.





- 4. Based on the following diagram use the values given to find the missing angles indicated.
  - a)  $a = 55 \text{ m}, b = 137 \text{ m} \rightarrow \text{find } \angle A, \angle B$
  - b)  $a = 235 \text{ cm}, c = 268 \text{ cm} \rightarrow \text{find } \angle A, \angle B$
  - c)  $b = 21 \text{ mm}, c = 40 \text{ mm} \rightarrow \text{find } \angle A, \angle B$
  - d)  $a = 30 \text{ cm}, b = 285 \text{ cm} \rightarrow \text{find } \angle A, \angle B$



$$d+0+90=180$$
  
 $d+0=90^{\circ}$ 

$$ten \theta = \frac{55}{137} \implies ten^{-1} \left(\frac{55}{137}\right) = \alpha \implies \alpha = 22$$

$$22 + \theta = 90$$

$$\alpha = 22$$

$$\frac{\Theta = 90 - 22}{\Theta = 68^{\circ}}$$

$$\sin q = \frac{235}{268}$$
 =  $\sin q = \frac{235}{268} = q$  =  $a = 61$ 

$$d + \theta = 90$$
  
 $61 + \theta = 90$   
 $0 = 90 - 61$   
 $0 = 29^{\circ}$ 

$$\cos \alpha = \frac{21}{40} \Rightarrow \cos^{-1}\left(\frac{21}{40}\right) = \alpha \Rightarrow \alpha = 58^{\circ}$$

$$d + 0 = 90^{\circ}$$
 $58 + 0 = 90$ 
 $0 = 90 - 58$ 
 $0 = 32^{\circ}$ 

$$tond = \frac{30}{285}$$

$$ton \left(\frac{30}{285}\right) = 4$$

$$q = 6$$

$$\alpha + \theta = 90$$

$$6 + \theta = 90$$

$$10 = 84^{\circ}$$