A linear relationship can be written in the standard form $\mathbf{A x}+\mathbf{B y}+\mathbf{C}=\mathbf{0}$ and slope y-intercept form $\mathbf{y}=\mathbf{m x}+\mathbf{b}$
Graph: $8 x-4 y-4=0$
use when $A x+B y+C=0$

METHOD 1: SLOPE and Y-INTERCEPT
Step: Rearrange the equation in slope y-intercept form as $y=m x+b$

$$
\begin{aligned}
8 x-4 y-4-8 x+4 & =0-8 x+4 \\
\frac{-4 y}{-4} & =\frac{-8 x}{-4}+\frac{4}{-4}
\end{aligned} \quad y=2 x-1
$$

Step: Determine the slope (m) and y-intercept (b)

$$
\text { Slope }(m)=2 \text { and } y \text {-intercept }(b)=-1
$$

Step 3: plot y-int, move right (always) as much as run, then up (it +)/down (it -) os much as rise. Connect the points with on extended line.

$$
\text { Slope }=\frac{\text { rise }}{\text { run }}=\frac{2}{1}
$$

METHOD 2: USING X AND Y - INTERCEPTS
Step: To find the x -intercept, let $\mathrm{y}=0$ and solve for x .

$$
\begin{aligned}
8 x-4(0)-4 & =0 \\
8 x-4^{+4} & =0^{+4} \\
\frac{8 x}{8} & =\frac{4}{8} \quad x=0.5
\end{aligned}
$$

Step2: To find the y -intercept, let $\mathrm{x}=0$ and solve for y .

$$
\begin{aligned}
8(0)-4 y-4 & =0 \\
-4 y-4+4 & =0 \\
\frac{-4 y}{-4} & =\frac{4}{-4}
\end{aligned}
$$

METHOD 3: TABLE OF VALUES ($\mathbf{y}=\mathrm{mx}+\mathrm{b}$)

\mathbf{x}	$\mathbf{Y}=\underline{2 x-1}$	POINTS
$\mathbf{- 1}$	$=2(-1)-1$	
	$=-2-1$	$\mathbf{A}(-1,-3)$
	$=-3$	
$\mathbf{0}$	$=2(0)-1$	$\mathbf{B}(0,-1)$
	$=0-1$	
	$=-1$	
$\mathbf{1}$	$=2(1)-1$	
	$=2-1$	
	$=1$	

use multiples of 3 to avoid
Ex2. Graph $y=\frac{1}{3} x-1$ using a table of values.
decimals

x	$y=\frac{1}{3} x-1$
-3	$=\frac{1}{3}(-3)-1$ $=-1-1$ $=-2$
0	$A(-3,-2)$
$=\frac{1}{3} \cdot(0)-1$	
$=0-1 \quad B(0,-1)$	
	$=-1$

PRACTICE

Graphing

1. Graph each equation using a table of values
a) $y=3 x-1$
b) $y=-2 x+2$

x	$y=3 x-1$	
-1	$3(-1)-1=-4$	$(-1,-4)$
0	$3(0)-1=-1$	$(0,-1)$
1	$3(1)-1=2$	$(1,2)$

x	$y=-2 x+2$	
-1	$-2(-1)+2=4$	$(-1,4)$
0	$-2(0)+2=2$	$(0,2)$
1	$-2(1)+2=0$	$(1,0)$

c) $y=1 / 2 x+4 \quad y=\frac{1}{2} x+4,$| x | $y=\frac{1}{2}(-2)+4=3$ |
| ---: | :--- |
| -2 | $\frac{1}{2}(0)+4=4$ |
| 2 | $\frac{1}{2}(2)+4=5$ |

2. Graph each equation using the slope and y-intercept.

$$
-x-1 \quad-x-1
$$

a) $y=2 x+3$
b) $y=1 / 2 x-2$
$m=\frac{\text { rise }}{\text { run }}=\frac{2}{1} \quad y$-int $=3$
$m=\underset{\text { run } \rightarrow}{\text { rise }}=\frac{1}{2} \quad y$-int $=-2$
c) $x+y+1=0$

3. Graph each equation by determining the intercepts.
a) $x+y=4$
b) $2 x+y=6$
$\left.\left.\begin{array}{c|c}x-\operatorname{lnt} \\ y=0\end{array}\right) \begin{array}{c}y \text { _int } \\ x=0\end{array}\right]$

x-int	y-int
$y=0$	$x=0$
$2 x+0=6$	$2(0)+y=6$
$\frac{2 x}{2}=\frac{6}{2}$	$y=6$
$x=3$	

4. Graph each equation using the most suitable method.
a) $y=5 x+2$
b) $3 x-y=6$
c) $y=3$
y-int $=3$
slope $=0$
slope $=\frac{\text { rise }}{\text { run }}=\frac{5}{1}$
y-int $=2$

