Date:

Unit 1: Linear Systems

A linear relationship can be written in the standard form Ax + By + C = 0 and slope y-intercept form y = mx + b

Graph: 8x - 4y - 4 = 0

use when Ax+By+C=0

METHOD 1: SLOPE and Y-INTERCEPT

Step1: Rearrange the equation in slope y-intercept form as y = mx + b

$$8x-4y-4-8x+4=0-8x+4$$

$$-\frac{4y}{-4}=-\frac{-8}{4}x+\frac{4}{4}$$

$$-\frac{4y}{-4}=-\frac{-8}{4}x+\frac{4}{4}$$

Step2: Determine the slope (m) and y-intercept (b)

Slope (m) = $\frac{1}{2}$ and y-intercept (b) =

Step 3: Plot y-int, move right (always) as much as run, then up (if t) / down (if -) as much as rise. Connect the points with an extended

Slape =
$$\frac{rise}{run} = \frac{2}{1}$$

METHOD 2: USING X AND Y - INTERCEPTS

Step1: To find the x-intercept, let y = 0 and solve for x.

$$8x-4(0)-4=0$$

$$8x-4^{+4}=0^{+4}$$

$$8x=4$$

$$x=0$$

$$x=0$$

Step2: To find the y-intercept, let x = 0 and solve for y.

$$8(0) - 4y - 4 = 0$$

$$-4y - 4 = 0$$

$$-4y = 4$$

$$-4y = 4$$

METHOD 3: TABLE OF VALUES (y=mx+b)

X	Y = 2x - 1	POINTS
-1	= 2(-1) -1	
	=-2-1	A(-1,-3)
	= -3	
0	= 2(0) - 1 = 0 - 1	
	-0-1	B(0,-1)
	=-1	
1	=2(1)-1 =2-1	
	= 2-1	C(1,1)
	= 1	

Ex2. Graph $y = \frac{1}{3}x - 1$ using a table of values.

use multiples of 3 to avoid decimals

PRACTICE

Graphing

1. Graph each equation using a table of values

a)
$$y = 3x - 1$$

 $\frac{x}{y} = 3x - 1$
 $\frac{3(-1) - 1}{3(0) - 1} = -4(-1, -4)$
0 $\frac{3(0) - 1}{3(1) - 1} = 2(1, 2)$

$$0 \quad |3(0)-1| = 1 \quad |0| = 1$$

b)
$$y = -2x + 2$$

$$\begin{array}{c|ccccc}
x & g = -2x + 2 \\
-1 & -2(-1) + 2 = 4 & (-1/4) \\
0 & -2(0) + 2 = 2 & (0/2) \\
1 & -2(1) + 2 = 0 & (1/0)
\end{array}$$

c)
$$y = \frac{1}{2}x + 4$$

2. Graph each equation using the slope and y-intercept.

a)
$$y = 2x + 3$$

b)
$$y = \frac{1}{2}x - 2$$

$$m = \frac{rise}{run} = \frac{1}{2}$$

- 3. Graph each equation by determining the intercepts.
 - a) x + y = 4

K+0 = 4 ×=4

(

X-19t	y-int
2× +0=6	2(0)+y=6
2x=6	9=6
(×=3	

c)
$$2x - 5y = 10$$

$$\frac{2x=10}{2}$$

- 4. Graph each equation using the most suitable method.
 - a) y = 5x + 2
- y-in+ = 2

- b) 3x y = 6
 - X-int
 - X= 2

