"SIMPLE" COMPOUND INTEREST

Comparing Simple Interest to Compound Interest

The SIMPLE way to calculate COMPOUND INTEREST

- Compound Interest is interest paid on the <u>principal</u> AND it's accumulated
- The interest is calculated at regular <u><u>Compounding</u></u> periods and then <u>odded</u> to the principal for the next compounding period.
- Compounding Period: The <u>length of time</u> for which interest is calculated <u>before</u> being accumulated.

<u>EXAMPLE</u>

Calculate the **amount** of a \$3 000 investment **after each year** for 5 years at 8% **simple interest**. Graph your results on the grid shown.

1	Year	Principal	Interest	Total Amount
SIMPLE	1	3000	3000 (0.08) (1)=240	3240
	2	3000	3000 (0.08)(1)=240	34 80
	3	3000	240	3720
	4	3000	240	3960
	5	3000	240	4200

Using Simple Interest to Calculate Compound Interest

Next, to calculate the **amount** of a \$3 000 investment **after** 5 years at 8% **compounded** annually, use the simple interest formula each year on the **principal AND previously accumulated interest**. Graph your results on the same grid as above.

Year	Principal	Interest	Total Amount
1	3000	3000(0.08)(1)=240	3240
2	3240	32 4 <i>0(0.08</i>) (1)=259.20	3499.20
3	3499.20	3499.20(0.08)(1)=279.	3779.14
4	3779.14	3779.14(0.08)(1) = 302.33	4081.47
5	4081.47	4081.47(0,08)(1)=326.52	4407,99

How much more is the compounding investment, compared to the simple interest investment?

4407.99-4200 = \$207.99

Which type of interest has linear growth? Which type of interest has exponential growth?

- Simple Interest has ______ growth because
- Compound Interest has <u>cxponential</u> growth because

SUMMARY

At the end of each time interval, the simple interest formula is used to calculate the interest, which is then added to the principal or previous amount.

EXAMPLE 1

a) \$500 is invested at 2.4% interest compounded annually for 3 years. Use the simple interest formula to calculate the total amount after 3 years.

Year	Principal	Interest	Total Amount
1	500	500(0.014)(1)=12	S 12
2	512	512(0.024)(1) = 12.29	52y.29
3	524.29	524.29(0.024)(1)=12.58	536.87-

- b) If the interest was not compounded, how would the final amount be different?
- final amount be different? Simple (onpound \$36 \$36.87 ... \$0.87 more with the compound interest T = Prt= 500(0.024)(3)= 36

EXAMPLE 2

a) Carlene wants to borrow \$7 000 for five years. Compare the growth of this loan at 7% per year, simple interest, to the same loan at 7% per year, compounded annually.

Simple I = P +Interest: = 7000(0.07)(5)= 2450

A=7+I = 7000 + 2450 = 49450

Compound	Year	Principal	Interest	Total Amount
Interest:	1	7000	7000(0.07)(1)= 490	7490
	2	7490	7490(0.07)(1)= 524.30	8014.30
	3	8014,30	8014.30(0.07)(1)=561.00	8575,30
	4	8575.30	8575.30(0.07)(1)=600.27	9175.57
	5	9175,57	9175.57 (0.07)(1)=642.29	9817.86