\qquad

"SIMPLE" COMPOUND INTEREST
 Comparing Simple Interest to Compound Interest

The SIMPLE way to calculate COMPOUND INTEREST

- Compound Interest is interest paid on the Principal and it's accumulated interest \qquad .
- The interest is calculated at regular compounding \qquad periods and then added to the principal for the next compounding period.
- Compounding Period: The length of time \qquad for which interest is calculated \qquad before being accumulated.

EXAMPLE

Calculate the amount of a $\$ 3000$ investment after each year for 5 years at 8% simple interest.
Graph your results on the grid shown.

Year	Principal	Interest	Total Amount
1	3000	$3000(0.08)(1)=240$	3240
2	3000	$3000(0.08)(1)=240$	3480
3	3000	240	3720
4	3000	240	3960
5	3000	240	4200

Using Simple Interest to Calculate Compound Interest

Next, to calculate the amount of a $\$ 3000$ investment after 5 years at 8% compounded annually, use the simple interest formula each year on the principal AND previously accumulated interest.
Graph your results on the same grid as above.

Year	Principal	Interest	Total Amount
1	3000	$3000(0.08)(1)=240$	3240
2	3240	$3240(0.08)(1)=259.20$	3499.20
3	3499.20	$3499.20(0.08)(1)=2799^{44}$	3779.14
4	3779.14	$3779.14(0.08)(1)=302.33$	4081.47
5	4081.47	$4081.47(0.08)(1)=326.52$	4407.99

How much more is the compounding investment, compared to the simple interest investment?

$$
4407.99-4200=\$ 207.99
$$

\qquad
Which type of interest has linear growth? Which type of interest has exponential growth?

- Simple Interest has \qquad linear growth because
- Compound Interest has \qquad exponential growth because

SUMMARY

At the end of each time interval, the simple interest formula is used to calculate the interest, which is then added to the principal or previous amount.

EXAMPLE 1

a) $\$ 500$ is invested at 2.4% interest compounded annually for 3 years. Use the simple interest formula to calculate the total amount after 3 years.

Year	Principal	Interest	Total Amount
1	500	$500(0.024)(1)=12$	512
2	512	$512(0.024)(1)=12.29$	524.29
3	524.29	$524.29(0.024)(1)=12.58$	536.87

b) If the interest was not compounded, how would the final amount be different?

$$
\begin{aligned}
I & =P r t \\
& =500(0.024)(3) \\
& =36
\end{aligned}
$$

Simple	Compound	
$\$ 36$	$\$ 36.87$	with the wore compound interest

EXAMPLE 2

a) Carlene wants to borrow $\$ 7000$ for five years. Compare the growth of this loan at 7% per year, simple interest, to the same loan at 7% per year, compounded annually.
Simple $I=P r+$
Interest: $=7000(0.07)(5)$

$$
\begin{aligned}
A & =P+I \\
& =7000+2450 \\
& =9450
\end{aligned}
$$

Compound Interest:

Year	Principal	Interest	Total Amount
1	7000	$7000(0.07)(1)=490$	7490
2	7490	$7490(0.07)(1)=524.30$	8014.30
3	8014.30	$8014.30(0.07)(1)=561.00$	8575.30
4	8575.30	$8575.30(0.07)(1)=600.27$	9175.57
5	9175.57	$9175.57(0.07)(1)=642.29$	9817.86

