Theoretical Probability

Theoretical Probability is another measure of the likelihood of an event. Without performing experiments, theoretical probability measures _______________________________outcomes

Theoretical Probability Formula:

Plevent) =	_	# of successful outcome
		total # possible autromes

To calculate theoretical probability, all outcomes must be <u>egually likely</u>, meaning each event has the same chance of occurring because the conditions are fair.

Recall the coin flipping experiment. Use a tree diagram to help determine the possible outcomes.

Event A (earning 3 points) is outcome # 8 (3 tails)

Event B (earning 1 point) is outcome # 4, 6, 7 (2 tails)

Event C (earning 0 points) is outcome # 1, 2, 3, 5 (0 or 1 tail)

Listing the outcomes and the events gives a more clear indication of the chances of having a particular event occur. In this case you can calculate the theoretical probability for each of the events.

Probability for Event A P(A) = # successful outcome total possible outcomes = 1 = 0.125 = 12.5 %

Probability for Event C $P(C) = \underbrace{\# successes}_{\# possibilities}$ $= \underbrace{4}_{8} = \underbrace{1}_{2} \underbrace{(reduce)_{rowest}_{krms}}$ = 0.5 = 50%

EXAMPLE 1

A standard deck of playing cards has 52 cards, 13 of each suit. If one card is drawn from the deck, find the probability of each event.

a) a heart
$$\rho(heart) = \frac{\# hearts}{\# total cards}$$

$$= \frac{13}{52} = \frac{1}{4}$$

b) an ace

$$P(ace) = \frac{\#aces}{\#cands} = \frac{4}{52} = \frac{1}{13}$$

be careful not to count jacks twice; two are already included with the hearts and

c) a heart, a club, or a jack

d) a heart, a club, a spade, or a diamond

P(heart, club, spade, diamond) =
$$\frac{\# hearts + \# clubs + \# spades + \# diamondo}{\# cards}$$

= $\frac{13+13+13+13}{52} = \frac{52}{52} = 1$

EXAMPLE 2

Jason rolls a regular six-sided die. Find the theoretical probability of each event. Express your answer as a fraction in lowest terms and as a percent.

a) rolling a 6
$$P(\text{noll ale}) = \frac{\text{# sixes}}{\text{# sides}}$$

$$= \frac{1}{6} = 16.7\%$$

b) rolling a number greater than 2
$$P(rol/2) = \frac{\# sides}{\# sides}$$

= $\frac{4}{6} = \frac{2}{3} = \frac{66.7\%}{6}$

c) rolling an 8
$$P(roll 8) = \frac{\# sides w/8}{\# sides}$$

$$= \frac{0}{6} = \frac{0}{1}.$$

d) rolling an even number

$$P(\text{roll even}) = # \frac{\text{sides that are even}}{\text{# sides}}$$

$$= \frac{3}{6}$$

$$= \frac{1}{2} = \frac{50}{6}$$