Task 1: The Distance Formula
Vertical Line Segments
How long is the line segment on the graph?
\square
5 units

How can the length be determined using a mathematical calculation instead of counting the number of squares?

Answer: \qquad $8-3=5$

Horizontal Line Segments
How long is the line segment on the graph?
6 units

How can the length be determined using a mathematical calculation instead of counting the number of squares?

Answer: 8-2

Diagonal Line Segments

This line segment is more difficult to determine the length as the number of squares cannot be counted as they are on a diagonal.
First, calculate the vertical line segment

$$
y_{2}-y_{1}=5-2=3
$$

Second, calculate the horizontal line segment

$$
x_{2}-x_{1}=7-3=4
$$

Then, calculate the hypotenuse of the right triangle

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
& =4^{2}+3^{2} \longrightarrow c^{2}=\sqrt{(7-3)^{2}+(5-2)^{2}} \\
& =16+9 \\
c^{2} & =25 \\
\sqrt{c^{2}} & =25 \\
c & =5
\end{aligned}
$$

Ex. Using the formula, find the length of the line segment $D(-3,5)$ and $E(4,-6)$.

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(4-(-3))^{2}+(-6-5)^{2}} \\
& =\sqrt{(7)^{2}+(-11)^{2}} \\
& =\sqrt{49+121}
\end{aligned}
$$

$$
d=\sqrt{170}
$$

$$
d=13
$$

\therefore The length is opp. 13

Task 2: Practice Complete the 5 practice examples in Discovering Distances.
Task 3: Applications
What types of triangles are there?
SCALENE = all sides unequal ISOSCELES $=2$ equal sides

EQUILATERAL $=3$ equal sides

RIGHT -ANGLE TRIANGLe $=$ follows the Pythagorean Theorem: $a^{2}+b^{2}=c^{2}$, where c is the hypotenuse (the longest side)

1. A triangle has these vertices: $D(6,3), O(-4,1), G(2,-5)$.
a. Graph this triangle.
b. Determine the length of each side using the formula.

Leave your answers with the square root.

$$
\begin{aligned}
D O & =\sqrt{(6-(-4))^{2}+(3-1)^{2}} \\
& =\sqrt{(10)^{2}+(2)^{2}} \\
& =\sqrt{104} \overline{D O}=2 \sqrt{26} \\
& =2 \sqrt{26} \\
O G & =\sqrt{(-4-2)^{2}+(1-(-5))^{2}} \\
& =\sqrt{36+36}=\sqrt{06}=6 \sqrt{2} \\
& =\sqrt{72} \\
D G & =\sqrt{(3-(-5))^{2}+(6-2)^{2}} \\
& =\sqrt{64+16} \\
& =\sqrt{80}=4 \sqrt{5} \quad \overline{D 6}=4 \sqrt{5}
\end{aligned}
$$

Therefore, \triangle DOGis SCALENE (scalene, isosceles, or equilateral?)
2. A triangle has these vertices: $C(5,-2), A(-3,(6), T(7,0)$.
a. Graph this triangle.
b. Use the formula to determine the length of each side. Leave your answers with the square root.

$$
\begin{aligned}
C A & =\sqrt{(-3-5)^{2}+(6-(-2))^{2}} \\
& =\sqrt{64+64} \quad \overline{C A}=8 \sqrt{2} \\
& =\sqrt{128} \\
A T & =\sqrt{(-3-7)^{2}+(6-0)^{2}} \\
& =\sqrt{100+36} \quad \overline{A T}=2 \sqrt{34} \\
& =\sqrt{136} \\
C T & =\sqrt{(5-7)^{2}+(-2-0)^{2}} \quad \overline{C T}=2 \sqrt{2} \\
& =\sqrt{4+4} \\
& =\sqrt{8} \\
& =2 \sqrt{2}
\end{aligned}
$$

c. Therefore, \triangle CAT is \qquad scalene (scalene, isosceles, or equilateral?)
d. Use the three lengths and the Pythagorean Theorem to determine if $\triangle C A T$ is right angled.

$$
A T^{2} \stackrel{?}{=} C A^{2}+C T^{2}
$$

$$
\begin{array}{c|c}
\text { LS } & R S \\
(\sqrt{136})^{2} & (\sqrt{128})^{2}+(\sqrt{8})^{2} \\
136 & 128+8
\end{array}
$$

$$
\begin{array}{ll}
\frac{\alpha}{2}=R S, i t^{\prime} s \text { right } \\
& \begin{array}{rlr}
A T & =\frac{0-6}{7-(-3)} & \\
& =\frac{-6}{10} &
\end{array} \\
=\frac{-3 / 5}{} &
\end{array}
$$

e. Determine the slope of each side!

$$
\begin{aligned}
C A & =\frac{-2-6}{5-(-3)} & A T & =\frac{0-6}{7-(-3)} \\
& =\frac{-8}{8} & & =\frac{-6}{10} \\
& =-1 & & =-3 / 5
\end{aligned}
$$

f. How can you use the slopes to determine whether \triangle CAT is right angled?
if $m_{C A} \times m_{C T}=-1$, then $\triangle C A T$ is right angled.

