MBF3C: Mathematics of Personal Finance Day 3: Quadratic Relation $y=a x^{2}$

Date:
Unit 4: Quadratics I

A parabola in standard position.

x	$y=x^{2}$	(x, y)
-4	$=(-4)^{2}=16$	$(-4,16)$
-3	$=(-3)^{2}=9$	$(-3,9)$
-2	$=(-2)^{2}=4$	$(-2,4)$
-1	$=(-1)^{2}=1$	$(-1,1)$
0	$=(0)^{2}=0$	$(0,0)$
1	$=(1)^{2}=1$	$(1,1)$
2	$=(2)^{2}=4$	$(2,4)$
3	$=(3)^{2}=9$	$(3,9)$
4	$=(4)^{2}=16$	$(4,16)$

INVESTIGATION 1

Graphing $y=a x^{2}$, when ' \mathbf{a} ' is positive
Complete each table of values. Use a different colour to sketch a graph of each parabola on the axes above.o. 5

$y=\left(\frac{1}{2}\right) x^{2}=0.3 x$	
x	(x, y)
-4	$0.5(-4)^{2}=8$
-3	$0.5(-3)^{2}=4.5$
-2	$0.5(-2)^{2}=2$
-1	$0.5(-1)^{2}=0.5$
0	$0.5(0)^{2}=0$
1	$0.5(1)^{2}=0.5$
2	$0.5(2)^{2}=2$
3	$0.5(3)^{2}=4.5$
4	$0.5(4)^{2}=8$

$y=\frac{1}{4} x^{2}=0.25$	
x	(x, y)
-4	$0.25(-4)^{2}=4$
-3	$0.25(-3)^{2}=2.25$
-2	$0.25(-2)^{2}=1$
-1	$0.25(-1)^{2}=0.25$
0	$0.25(0)^{2}=0$
1	$0.25(1)^{2}=0.25$
2	$0.25(2)^{2}=1$
3	$0.25(3)^{2}=2.25$
4	$0.25(4)^{2}=4$

$y=2 x^{2}$	
x	(x, y)
-4	$2(-4)^{2}=32$
-3	$2(-3)^{2}=18$
-2	$2(-2)^{2}=8$
-1	$2(-1)^{2}=2$
0	$2(0)^{2}=0$
1	$2(1)^{2}=2$
2	$2(2)^{2}=8$
3	$2(3)^{2}=18$
4	$2(4)^{2}=32$

$y=3 x^{2}$	
x	(x, y)
-4	$3(-4)^{2}=48$
-3	$3(-3)^{2}=27$
-2	$3(-2)^{2}=12$
-1	$3(-1)^{2}=3$
0	$3(0)^{2}=0$
1	$3(1)^{2}=3$
2	$3(2)^{2}=12$
3	$3(3)^{2}=27$
4	$3(4)^{2}=48$

When ' α ' is positive and $|a|<1$, the parabola opens UP and is vertically compressed When 'a is positive and $|a|>1$, the parabola opens up and is verticolly stretched This type of transformation is called a Vertical compression/stretch

INVESTIGATION 2

Graphing $y=a x^{2}$, when ' \mathbf{a} ' is negative
Complete the table of values for parabola $y=-x^{2}$

x	$y=-x^{2}$	(x, y)
-4	$-(-4)^{2}=-16$	$(-4,-16)$
-3	$-(-3)^{2}=-9$	$(-3,-9)$
-2	$-(-2)^{2}=-4$	$(-2,-4)$
-1	$-(-1)^{2}=-1$	$(-1,-1)$
0	$-(0)^{2}=0$	$(0,0)$
1	$-(1)^{2}=-1$	$(1,-1)$
2	$-(2)^{2}=-4$	$(2,-4)$
3	$-(3)^{2}=-9$	$(3,-9)$
4	$-(4)^{2}=-16$	$(4,-16)$

Complete each table of values. Use a different colour to sketch a graph of each parabola on the axes above.

When ' a ' is negative and $|a|<1$, the parabola opens down and is compressed When ' a ' is negative and $|a|>1$, the parabola opens dow \cap and is stretched When ' a ' is negative, this type of transformation is called a reflection in the x-axis (oflip)

Quadratic $y=\mathbf{a} x^{2}$ Practice

1. In each picture, the graph of $y=x^{2}$ is shown as a dotted parabola (standard position).

The solid parabola is the graph of a quadratic relation of the form $y=a x^{2}$.
For each solid parabola, is the value of a :

- less than -1
- between -1 and 0
- between 0 and 1
- greater than 1?

Explain your answer.

a is between
-1 and $-1 k 0$
b/c graph io
compressed
and flipped
2. On the same axis graph the following functions:

(1)	$y=2 x^{2}$
-2	$2(-2)^{2}=8$
-1	$2(-1)^{2}=2$
0	0
1	$2(1)^{2}=2$
2	$2(2)^{2}=8$

(2)	$y=3 x^{2}$
-2	$3(-2)^{2}=12$
-1	$3(-1)^{2}=3$
0	0
1	$3(1)^{2}=3$
2	$3(2)^{2}=12$

How are the graphs the same?

open up/porabola/, stretched

How are the graphs different?
(2) stretched more than (1) (norrowe)
Does this function have a minimum or a maximum? min
If $a>1$, the graph is vertically $\frac{\text { stretched }}{\text { (stretched / compressed) }}$
and it looks \qquad .

MBF3C: Mathematics of Personal Finance
Day 3: Quadratic Relation $y=a x^{2}$

Date:

Unit 4: Quadratics I
3. On the same axis graph the following functions:

(1)	$y=1 / 2 x^{2}=0.5(x)^{2}$
-2	$=0.5(-2)^{2}=2$
-1	$=0.5(-1)^{2}=0.5$
0	$=0$
1	$=0.5(1)^{2}=0.5$
2	$=0.5(2)^{2}=2$

(2)	$y=1 / 4 x^{2}=0.25 x^{2}$
-2	$0.25(-2)^{2}=1$
-1	$0.25(-1)^{2}=0.25$
0	0
1	0.25
2	1

How are the graphs the same? open up/parabola/compressed vert.
How are the graphs different?
(2) is wider than
(1)

Does this function have a minimum or a maximum? min
If $1>a>0$, the graph is vertically $\frac{\text { compressed }}{\text { (stretched / compressed) }}$ and it looks $\frac{\text { wider }}{\text { (narrower /wider) }}$.
4. On the same axis graph the following functions:

(1) $y=-3 x^{2}$	
-2	$-3(-2)^{2}=-12$
-1	$-3(-1)^{2}=-3$
0	0
1	-3
2	-12

(2) $y=-1 / 4 x^{2}=-0.25 x^{2}$	
-2	$=-1$
-1	$=0.25$
0	$=0$
1	$=-0.25$
2	$=-1$

How are the graphs the same? open down/parobols / flipped How are the graphs different?

> (1) is stretched (2) compressed

Does this function have a minimum or a maximum? min
 If the value of ' a ' is positive the parabola opens \qquad
If the value of ' α ' is negative then parabola opens \qquad
This is called a reflection in the X - axis.

