SIMILAR TRIANGLES

Similar triangles have:

- all their angles equal
- corresponding sides have the same ratio

These triangles are SIMILAR.

(Equal angles have been marked with the same number of arcs)
If one shape can become another using Resizing (dilation, contraction, compression, enlargement) then these Shapes are Similar!

How to Find if Triangles are Similar

But we don't need to know all three sides and all three angles ...two or three out of the six is usually enough. There are three ways to find if two triangles are similar: AA, SAS and SSS:

AA
AA stands for "angle, angle" and means that the triangles have two of their angles equal.
If two triangles have two of their angles equal, the triangles are similar.

Example:

SAS

SAS stands for "side, angle, side" and means that we have two triangles where:

- the ratio between two sides is the same as the ratio between another two sides
- and we we also know the included angles are equal.

If two triangles have two pairs of sides in the same ratio and the included angles are also equal, then the triangles are similar.

Example

In this example we can see that:

- one pair of sides is in the ratio of $21: 14=3: 2$
- another pair of sides is in the ratio of $15: 10=3: 2$
- there is a matching angle of 75° in between them

SSS

SSS stands for "side, side, side" and means that we have two triangles with all three pairs of corresponding sides in the same ratio.

If two triangles have three pairs of sides in the same ratio, then the triangles are similar.

Example:

\qquad

CORRESPONDING SIDES

In similar triangles, the sides facing the equal angles are always in the same ratio.
For example:

Triangles R and S are similar. The equal angles are marked with the same numbers of arcs.
What are the corresponding lengths?

- The lengths 7 and a are corresponding (they face the angle marked with one arc)
- The lengths 8 and 6.4 are corresponding (they face the angle marked with two arcs)
- The lengths 6 and b are corresponding (they face the angle marked with three arcs)

CALCULATING THE LENGTHS OF CORRESPONDING SIDES

It may be possible to calculate lengths we don't know yet. We need to:
Step 1: Find the ratio of corresponding sides in pairs of similar triangles.
Step 2: Use that ratio to find the unknown lengths.

$$
\begin{array}{rlrl}
S \rightarrow \frac{6.4}{8} & =\frac{a}{7} & \frac{6.4}{8}=\frac{b}{6} \\
R \rightarrow \text { scale factor } & \\
& =\frac{a}{7} & 0.8=\frac{b}{6} \\
7 \times 0.8 & =a & & \\
& & \\
Q \times 5.6 & & & \\
& =4=4.8
\end{array}
$$

Example 1:
a. Explain why $\triangle A B C \sim \triangle D E F$. Justify your answer. 2 angles of each triangle is the some AA
sale factor

$$
\begin{aligned}
\frac{10}{5} & =\frac{e}{7}
\end{aligned} \frac{10}{5}=\frac{9}{a} .
$$

$$
\begin{aligned}
& \therefore Q \text { is } 4.5 \\
& e \text { is } 14
\end{aligned}
$$

Example 2: Are the two triangles in the diagram similar? Explain your reasoning.
I hey are similar b / c the scale factor is 5 .

$$
\frac{20}{4}=\frac{15}{3}=\frac{25}{5}=5
$$

