$$
\text { Area of the room }=2 \times \text { Areas }_{\text {rug }}
$$

Day 3. page $1, x^{H}$
4 m by 6 m rug covers half of the floor area of edges What are the dimensions of the room?
Let " x " represent the width of the uniform strip
If the area of the rug $6 \times 4=24 \mathrm{~m}^{2}$ then the area of the room is $24 \times 2=48 \mathrm{~m}^{2}$

$$
\begin{aligned}
\text { Area of the room } & =48 \mathrm{~m}^{2} \\
& =48 \text { Fo }
\end{aligned}
$$

$$
(2 x+6)(2 x+4)=48 \begin{aligned}
& \text { Foll to } \\
& \text { expand }
\end{aligned}
$$

$$
\begin{aligned}
& 4 x^{2}+8 x+12 x+24=48 \\
& 4 x^{2}+20 x+24=48
\end{aligned}
$$

$$
\begin{array}{ll}
\text { expand } \\
\text { collect } & \text { Length }
\end{array}=(2 x+6)
$$

$4 x^{2}+20 x-24$

$$
\begin{aligned}
4\left(x^{2}+5 x-6\right) & =0 \\
\Rightarrow 4(x-1)(x+6) & =0
\end{aligned}
$$ like terms (simplify)

same

$G C F=4$

$$
\begin{array}{ll}
\underset{x-1=0}{x=1} & x+6=0 \\
x \leq-6 / c
\end{array}
$$

$$
\begin{aligned}
\therefore \quad \text { Length }(2 x+6) \text { is } 2(1)+6=8 m \\
\text { width }(2 x+4) \text { is } 2(1)+4=6 m
\end{aligned}
$$

MPM2D1 STO form \rightarrow Vertex
Date: \qquad
Day 4: Completing the Square - Vertex \& Zeros
Chapter 6: Quadratic Equations

\qquad

\qquad

