Day 3. page 1, X. 4 m by 6 m rug covers half of the floor area of a room and leaves a uniform strip of bare floor around the edges_What are the dimensions of the room? Same uniform(some het "x" represent the width mydth) of the uniform strip If the area of the rug 6x4 = 24 m2 6m then the area of the room is 24 × 2 = 48 m2 RUG 4m Area of the room = 48 m2 (2x+6)(2x+4) = 48 Foil to expand henoth = (2x+6)collect $4x^2 + 8x + 12x + 24 = 48$ like terms $4x^2 + 20x + 24$ (simplify) $4x^2 + 20x - 24 = 0$ GCF= 4 $4(x^2 + 5x - 6) = 0$ M/A/N -6/5/7,6 $\Rightarrow 4(x-1)(x+6)$ X+6=0 Length (2x+6) is 2(1)+6=8mwidth (2x+4) is 2(1)+4=6m

Area of the room = 2x Arearug

Day 4: Completing the Square - Vertex & Zeros Chapter 6: Quadratic Ed

Steps $y = Q(x-h)^2 +$	Example #1 $y = (-2x^2 - 4x + 3)$	Example #2 $y = -3x^2 + 20x + 1$
Common factor the coefficient of the x^2 term from the first two terms. Do not factor out the x.	$=-2\left(\frac{-2x^{2}}{-2} - \frac{ux}{-2}\right) + 3$ $=-2\left(x^{2} + 2x\right) + 3$	$y = -5\left(\frac{x^2 - 4x}{x^2 + 4x}\right) + 1$
Divide the coefficient of x by 2, and then square it.	$\frac{+2}{2} = 1 \longrightarrow (1)^2 = \frac{1}{2}$	$\frac{-4}{2} = -2$ $(-2)^2 = 4$
Add and subtract that value inside the bracket of the equation two steps above.	$= -2(x^{2}+2x+1-1)+3$	$y = -5(\frac{x^2 - 4x + 4 - 4}{7.5.T}) + 1$
Move the last term in the bracket to the outside of the bracket and multiply it with the number in front of the bracket. Add the two constants together.	$= -2(x^{2}+2x+1)+2+3$ $= -2(x^{2}+2x+1)+5$ Perfect squae tripomiot	$\int_{-\infty}^{\infty} -5(x^{2}-4x+4)+20+($ why? $(-5)(-4) = -5(x^{2}-4x+4)+24$ PST
Factor the perfect square trinomial inside the bracket.	=-2(x+1)2+5 Vertex(-15)	$y = -5(x-2)^2 + 21$

Now, determine the zeros: Set y = 0 $0 = -2(x+1)^2 + 5$ $0 = -5(x-2)^2 + 21$ Remove the k $-5 = -2(x+1)^2$ $-21 = -5(x-2)^2$ Remove the a $\frac{-5}{-2} = -\frac{2(x+1)^2}{-2}$ $\frac{-21}{-5} = -\frac{5(x-2)^2}{-5}$

Square root – Don't forget the
$$\pm \sqrt{2.5} = \sqrt{(x+1)^2}$$

$$\sqrt{4.2} = \sqrt{(x-2)^2}$$

Remove the h 1.6 = x + 1 and -1.6 = x + 1 2.05 = x - 2 and -2.05 = x - 2

Chapter of Cadaratic Equations	Char	oter 6:	Ouadratic	Equations
--------------------------------	------	---------	------------------	------------------

Steps	Example #3 $y = x^2 - 6x + 5$	Example #4 y = x ² - 2x + 1
Common factor the coefficient of the x^2 term from the first two terms. Do not factor out the x.	$y = (x^2 - 6x) + 5$	$y = (x^2 - 2x) + 1$
Divide the coefficient of x by 2, then square it.	$\frac{-6}{2}$ = $\frac{(-3)^{2}}{2}$	$\frac{-2}{2} \left(-1\right)^{2} \left(\frac{1}{2}\right)^{2}$
Add and subtract that value inside the bracket of the equation two steps above.	$y = (x^2 - 6x + 9 - 9) + 5$	$y=(x^2-2x+1-1)+1$
Move the last term in the bracket to the outside of the bracket and multiply it with the number in front of the bracket. Add the two constants together.	$y=(x^2-6x+9)-9+5$ $y=(x^2-6x+9)-4$	$y = (x^2 - 2x + 1) - + $ $y = (x^2 - 2x + 1)$
Factor the perfect square trinomial inside the bracket.	$y = (x - 3)^2 - 4$	y=(x-1)2
<u> </u>	***************************************	***************************************
$y = (x-3)^2 - y$ Vertex $(3, -4)$ Steps $1, 3, 5$ Steps $a \cdot (1, 3, 5)$	-5 (D) (D) ×	-5 0 5 5
Now, determine the zeros: Set $y = 0$	$0 = (x-3)^2 - 4$ $4 = 1(x-3)^2$	10=(x-1)2
Remove the k	$4 = 1(x - 3)^{2}$	0=x-1
Remove the a	$\sqrt{4} = (x-3)^2$	X=1
Square root – Don't forget the ±	2 = x - 3 and $-2 = x - 3$	
Remove the h	V=5 $X=1$	

Day 4: Completing the Square – Vertex & Zeros	Chapter 6: Quadratic Equations

Steps	Example #5 $y = -3x^2 - 6x$	Example #6 $y = -2x^2 + 8x$
Common factor the coefficient of the x^2 term from the first two terms. Do not factor out the x.	$y=-3(x^2+2x)$	y=-2(x2-4x)
Divide the coefficient of x by 2, then square it.	$\frac{2}{2} = 1 (1)^2 = 1$	$\frac{-4}{2} = -2$ $(-2) = 4$
Add and subtract that value inside the bracket of the equation two steps above.	$y = -3(x^2 + 2x + 1 - 1)$	y=-2(x2-4x+4-4)
Move the last term in the bracket to the outside of the bracket and multiply it with the number in front of the bracket. Add the two constants together.	y=-3(x+1)2+3	$y = -2(x-2)^{2} + 8$
Factor the perfect square trinomial inside the bracket.	Vertex (-1,3) steps =-3,-9	Vertex (2,8) Steps = -2,-6)
***************************************	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
•	-5 / 5 · 5	-5
Now, determine the zeros: Set $y = 0$	$0 = -3(x+1)^2 + 3$	$0 = -2(x-2)^2 + 8$
Remove the <i>k</i>	$-3 = -3(x+1)^2$	$-8 = -2(x-2)^2$
Remove the <i>a</i>	$\frac{-3}{-3} = \frac{-3(x+1)^2}{-3}$	$\frac{-8}{-2} = \frac{-2(x-2)^2}{-2}$
Square root – Don't forget the ±	$\int 1 = \int (x+1)^2$	$\sqrt{4 = \left(x-2\right)^2}$
Remove the <i>h</i>	1=x+1 and -1=x+1	2=x-2 and $-2=x-2 x=y $ $ x=0 $
	X=0 X=-2	