Arithmetic Series
A series is the sum of the terms in a sequence.
An arithmetic series is the sum of the terms in an arithmetic sequence.
For example, for the arithmetic sequence $1,4,7,10, \ldots$, the arithmetic series is $1+4+7+10+\ldots$ where t_{4} represents the $4^{\text {th }}$ term, S_{4} represents the sum of the first 4 terms.

The sum of the first n terms of an arithmetic sequence (a series) can be calculated in two ways:
(1) $\mathrm{S}_{\mathrm{n}}=\frac{n[2 a+(n-1) d]}{2}$
(2) $\mathrm{S}_{\mathrm{n}}=\frac{n\left(t_{1}+t_{n}\right)}{2}$

Decide which one to use based on the information given.

Ex1. For the given arithmetic series, calculate t_{17} and S_{17}.

$$
\begin{aligned}
& 3+7+11+\ldots \quad a=3 \quad d=4 \\
& t_{n}=a+(n-1) d \\
& t_{n}=3+(n-1) 4 \\
& t_{n}=3+4 n-4 \\
& t_{n}=4 n-1
\end{aligned} \quad \begin{aligned}
& t_{17}=4(17)-1 \\
& t_{17}=67
\end{aligned}
$$

$$
S_{17}=\frac{17(3+67)}{2}=\frac{17\binom{35}{2}}{2}=595
$$

Ex2. Find the sum of the first 12 terms of the arithmetic series with $\mathrm{a}=3$ and $\mathrm{t}_{12}=36$.

$$
S_{n}=\frac{n\left(t_{1}+t_{n}\right)}{2} \Rightarrow S_{12}=\frac{12(3+36)}{2}=6.39=234
$$

Ex3. Find the sum of the first 25 terms of the arithmetic series where the $14^{\text {th }}$ term is 102 and terms decrease by 9 .

$$
\begin{aligned}
& t_{14}=102 \quad d=-9 \quad S_{25}=? \\
& t_{n}=a+(n-1) d \\
& t_{25}=219+(25-1)(-9) \\
& =219+(24)(-9) \\
& =219-216 \\
& 102=a-117 \\
& 219=a \\
& S_{25}=\frac{n\left(t_{1}+t_{25}\right)}{2} \\
& 102=a+(14-1)(-9) \\
& 102=a+(13)(-9) \\
& t_{25}=3 \\
& =\frac{25(219+3)}{2} \\
& =\frac{25\left(2 z_{z}\right)}{2} \| \\
& \text { Page } 1 \text { of } 2
\end{aligned}
$$

Ex4. Calculate the sum of the arithmetic series.

$$
\left.\begin{array}{rlrl}
-4-10-16-\ldots-94 & a=-4 & d=-10-(-4)=-6 \\
t_{n} & =a+(n-1) d \\
t_{n} & =-4+(n-1)(-6) \\
& =-4-6 n+6 \\
t_{n} & =-6 n+2
\end{array} \quad \begin{array}{ll}
-94 & =-6 n+2 \\
& -96
\end{array}\right)
$$

Ex. In an amphitheatre, seats are arranged in 50 semicircular rows facing a domed stage. The first row contains 23 seats, and each row contains 4 more seats than the last. How many seats are there in total?

Ex6. Samantha deposited $\$ 128$ into her bank account. Each week, she deposits $\$ 7$ less than the previous week until she makes her last deposit of $\$ 9$. Find the total value of her deposits.

$$
\frac{t_{1}}{128}, \frac{t_{2}}{121}, \frac{t_{3}}{114}, \ldots \cdots \frac{t_{n}}{9}
$$

$$
\begin{aligned}
& a=128 \quad d=-7 \\
& t_{n}=a+(n-1) d \\
& 9=128+(n-1)(-7) \\
& 9=128-7 n+7 \\
& 7 n=126 \\
& n=18
\end{aligned}
$$

$$
\begin{aligned}
& S_{18}=\frac{{ }^{9} 8(128+9)}{2} \\
& S_{18}=9(137) \\
& S_{18}=1233
\end{aligned}
$$

\therefore She deposited \$1233 in total.

