ARITHMETIC SERIES

A series is the sum of the terms in a sequence.

An **arithmetic series** is the sum of the terms in an arithmetic sequence.

For example, for the arithmetic sequence 1, 4, 7, 10, ..., the arithmetic series is 1 + 4 + 7 + 10 + ... where t₄ represents the 4th term, S_4 represents the sum of the first 4 terms.

The sum of the first n terms of an arithmetic sequence (a series) can be calculated in two ways:

 $\mathbf{0} \, \mathrm{S}_{\mathrm{n}} = \frac{n[2a + (n-1)d]}{2}$ **2** $S_n = \frac{n(t_1 + t_n)}{2}$

Decide which one to use based on the information given.

Ex3. Find the sum of the first 25 terms of the arithmetic series where the 14th term is 102 and terms decrease by 9.

$$t_{1iy} = 102 \quad d = -9 \qquad S_{25} = ?$$

$$t_{n} = a + (n - 1)d \qquad t_{25} = 2i9 + (25 - 1)i - 9) \qquad S_{25} = \frac{n(t_1 + t_{15})}{2}$$

$$102 = a + (14 - 1)i - 9) \qquad = 2i9 + (24)i - 9 \qquad = \frac{25(219 + 3)}{2}$$

$$102 = a - 117 \qquad t_{27} = 3 \qquad = \frac{25(224)}{2} 11i = \frac{25(224)}{2} 11i$$

Day 4: Arithmetic Series

Ex4. Calculate the sum of the arithmetic series. -4 - 10 - 16 - ... - 94 a = -4 d = -10 - (-4) = -6 $t_n = a + (n-1) d$ -94 = -6n + 2 $t_n = -4 + (n-1)(-6)$ -96 = -6n = -4 - 6n + 2 = 8(-98) = -784= -784

Ex5. In an amphitheatre, seats are arranged in 50 semicircular rows facing a domed stage. The first row contains 23 seats, and each row contains 4 more seats than the last. How many seats are there in total?

Ex6. Samantha deposited \$128 into her bank account. Each week, she deposits \$7 less than the previous week until she makes her last deposit of \$9. Find the total value of her deposits.

$$\frac{t_{1}}{128}, \frac{t_{2}}{121}, \frac{t_{3}}{114}, \frac{t_{3}}{9} \qquad \frac{t_{n}}{9} \qquad S_{18} = \frac{\sqrt{8}(128+9)}{2}$$

$$a = 128 \quad d = -7 \qquad t_{18} = 9 \qquad S_{18} = \frac{\sqrt{8}(128+9)}{2}$$

$$f_{18} = \frac{\sqrt{8}(128+9)}{2} \qquad S_{18} = \frac{\sqrt{8}(128+9)}{2}$$

$$q = 128 + (n-1)d \qquad t_{18} = 9 \qquad S_{18} = 9(137)$$

$$q = 128 - 7n + 7 \qquad S_{18} = 1233$$

$$q = 1233 \qquad S_{18} = 1233$$

$$r = 18 \qquad S_{18} = 1233 \qquad S_{18} = 1233$$