Investigating How to Factor a Simple Trinomial
Part A: Using FOIL
Expand and simplify each of the following.

$$
\begin{aligned}
\text { Question } \downarrow & \text { Answer } \downarrow \\
(x+3)(x+2) & =(x)(x)+(x)(2)+(3)(x)+(3)(2) \\
& =x^{2}+2 x+3 x+6 \\
& =x^{2}+5 x+6
\end{aligned}
$$

c.

$$
\begin{aligned}
(x+4)(x-3) & =x^{2}-\underbrace{3 x+4 x-12} \\
& =x^{2}+x-12
\end{aligned}
$$

e. $(x-6)(x+2)=x^{2}+2 x-6 x-12$

$$
=x^{2}-4 x-12
$$

Question \downarrow

$$
\begin{aligned}
(x-\underbrace{4}(x-1) & =A^{2 n s w e r \downarrow} \\
& x^{2}-\underbrace{x-4 x+4} \\
& =x^{2}-5 x+4
\end{aligned}
$$

d. $\quad(x-2)(x+5)=x^{2}+5 x-2 x-10$

$$
=x^{2}+3 x-10
$$

$$
\text { f. } \quad \begin{aligned}
(x-\sqrt{\sqrt[3]{x}}-7) & =x^{2}-7 x-3 x+21 \\
& =x^{2}-10 x+21
\end{aligned}
$$

Part B: Making the Connection
Consider the question being in the form $(x+m)(x+n)$, and the answer being in the form $x^{2}+b x+c$. Complete the chart based on the 8 questions above. The first question has been completed for you.

	Question			Answer			
	$(x+m)(x+n)$	m	n	$x^{2}+b x+c$	b	c	
a.	$(x+3)(x+2)$	3	2	$x^{2}+5 x+6$	5	6	
b.	$(x-4)(x-1)$	-4	-1	$x^{2}-5 x+4$	-5	4	
c.	$(x+4)(x-3)$	4	-3	$x^{2}+x-12$	1	-12	
d.	$(x-2)(x+5)$	-2	5	$x^{2}+3 x-10$	3	-10	
e.	$(x-6)(x+2)$	-6	2	$x^{2}-4 x-12$	-4	-12	
f.	$(x-3)(x-7)$	-3	-7	$x^{2}-10 x+21$	-10	21	

1. What is the relationship between m, n, and b ?

$$
b=m+n
$$

2. What is the relationship between m, n, and c ?

$$
c=m \cdot n
$$

3. Try expanding $(x+6)(x+3)$ without $F O \|$ Ling (i.e. use what you discovered above about the relationship of the numbers to skip right to the answer).

$$
(x+6)(x+3)=x^{2}+9 x+18
$$

4. Try expanding $(x-5)(x+3)$ without $F O l$ Ling (i.e. use what you discovered above about the relationship of the numbers to skip right to the answer).

$$
(x-5)(x+3)=x^{2}-2 x-15
$$

Part C: Doing Some Practice
Fill in the blanks. Do not FOlL!!
a. $\quad(x+5)(x+1)=x^{2}+6 x+5$
b. $\quad(x-2)(x-6)=x^{2}-8 x+12$
c. $(x-3)(x+2)=x^{2}-1 x-6$
d. $(x+8)(x-2)=x^{2}+6 x-16$
e. $\quad(x+5)(x+\underline{2})=x^{2}+7 x+10$
f. $\quad(x-3)(x-9)=x^{2}-12 x+27$
g. $(x-6)(x+3)=x^{2}-3 x-18$
h. $(x+12)(x-1)=x^{2}+11 x-12$
i. $(x+4)(x+2)=x^{2}+6 x+8$

$$
\text { j. }(x-2)(x-3)-x^{2}-7 x+10
$$

k. $\left.\quad(x+3)(x-1)=x^{2}+2 x-3\right)$

1. $(x-4)(x+1)=x^{2}-3 x-4$
m. $(x+3)(x+4)=x^{2}+7 x+12$
n. $(x-2)(x-P)=x^{2}-12 x+20$
o. $(x+\ldots)(x-\ldots)=x^{2}+4 x-2$
p. $(x-5)(x+4)=x^{2}-x-20$

Guess what? If you could answer questions $m, n, o, \& p$, then you can factor a simple trinomial! When asked to 'Factor', your Question and Answer are switched.
Example: Factor
Question $\downarrow \quad$ Answer \downarrow
a. $x_{26}^{2}+8 x+12=(x+2)(x+6)$

Question $\downarrow \quad$ Answer \downarrow
b. $\quad x^{2}-7 x+10=(x-2)(x-5)$

Explain, in your own words, how to get from the question to the answer when factoring simple trinomíals.
Find Two numbers that multiply to the last term which add up to the coefficient of the middle term...

Part D: The Hardest Part...
The hardest part of factoring simple trinomial is often finding the two numbers, m and n. These are the thoughts you need to take to help.
Consider this example: $x^{2}+5 x-24$. Let's pretend that you can't find the two numbers that multiply to -24 and add to +5 . Answer these questions.

1. Write down ALL of the pairs of numbers that multiply to 24 in the table. All of the rows here should be used.
2. Remember that they have to multiply to a NEGATIVE number. What does this mean about the signs (i.e. + or-) of m and n ?

Either m or n is "-"

possible m and n values	
m	n
1	24
2	12
3	8
4	6

3. Now you have to decide which one is positive and which one is negative. Look at the middle term. m and n need to ADD to a POSITIVE number. What does this tell you about which of m or n is positive and which is negative?
The bigger number must be positive
4. So .. what is $m=+8 \quad$ and $n=-3$

Consider this example: $x^{2}-9 x+18$. Let's pretend that you can't find the two numbers that multiply to 24 and add to -9. Answer these questions.
5. Write down ALL of the pairs of numbers that multiply to $i 8$ in the table. All of the rows here should be used.
6. Remember that they have to multiply to a POSITIVE number. What does this mean about the signs (i.e. + or-) of m and n ? m and n both must be "either" or "t"

possible m and n values	
m	n
1	18
2	9
3	6

7. If they need to $A D D$ to a NEGATIVE number, then will both m and n be positive or both be negative? negative
8. So.. what is m
Part E: Practice
9. Factor, if possible. If it is not possible, state why not.
a. $x^{2}+12 x+27=(x+3)(x+9)$
b. $x^{2}-8 x+12=(x-2)(x-6)$
c. $x^{2}+x-12=(x+3)(x-4)$
d. $x^{2}-3 x-10=(x+2)(x-5)$
e. $3 x^{2}-18 x+27=3\left(x^{2}-6 x+9\right)$

$$
\text { f. } 2 x^{2}+10 x+12=2\left(x^{2}+5 x+6\right)
$$

common factor the 3 first common factor the 2 first

$$
=3(x-3)(x-3)
$$

$$
2(x+2)(x+3)
$$

factor the remaining simple trinomial
factor the remaining simple trinomial

