Investigating Exponential Relationships

The temperature data collected by a temperature probe has been recorded in the following table.
a) Calculate the $1^{\text {st }}$ Differences $\rightarrow\left(y_{2}-y_{1}\right)$
b) Calculate the $2^{\text {nd }}$ Differences $\rightarrow\left(1^{\text {st }}\right.$ Diff $_{2}-1^{\text {st }}$ Diff $\left._{1}\right)$
c) Calculate the Ratio of Successive y-values $\rightarrow\left(y_{2} \div y_{1}\right)$
d) Plot the (x, y) coordinates and draw the graph.
$\left.\begin{array}{|c|c|c|c|c|}\hline \mathbf{x} & \mathbf{y} & \begin{array}{c}\mathbf{1}^{\text {st }} \\ \text { Differences }\end{array} & \begin{array}{c}\mathbf{2}^{\text {nd }} \\ \text { Differences }\end{array} & \begin{array}{c}\text { Ratio of Successive } \\ \mathbf{y} \text {-values }\end{array} \\ \hline 0 & 2 & & & \\ \hline 1 & 6 & 4 & & 6 \div 2=3 \\ \hline 2 & 18 & 12 & 8 & 18 \div 6=3 \\ \hline 3 & 54 & 36 \\ \hline 4 & 162 & 108 \\ \hline 5 & 486 & 486-162 \\ =324\end{array}\right)$

In an exponential relation, for equal steps of x, neither the $1^{\text {st }}$ or $2^{\text {nd }}$ differences are COnstant, but the $\mathrm{ra,tiOs}$ of consecutive y-vo, lues are constant.

The graph increases rapidly as you move to the right on the x-axis, and approaches a \qquad Vertical line.
 This is an example of exponential \qquad GROWTH

TERMINOLOGY

Exponential Growth: Non-linear \qquad growth represented by an exponential relation and a graph with a rapidly increasing upward curve Exponential Decay: Non-lineor growth represented by an exponential relation and a graph with a rapidly decreasing downward curve

An EXPONENTIAL FUNCTION is a function with a Variable in the exponent. $y=a^{x}$ Some examples would be $y=2^{x} \quad y=10^{x} \quad y=\left(\frac{2}{3}\right)^{x}$

1. Sketch the graphs of $y=2^{x}$ and $y=3^{x}$ on the same axes

x	$y=2^{x}$	x	$y=3^{x}$
-3	0.125	-3	0.037
-2	0.25	-2	0.111
-1	0.5	-1	0.333
0	1	0	1
1	2	1	3
2	4	2	9
3	8	3	27

a) Comparing to the general exponential function $y=a^{x}$, is $a>1$ or is $0<a<1$? $a>1$.
b) What is the y-intercept? $(0,1)$. Is there an x-intercept? no
c) Are the functions increasing or decreasing? increasing
2. Sketch the graphs of $y=\left(\frac{1}{2}\right)^{x}$ and $y=\left(\frac{1}{3}\right)^{x}$ on the same axes

a) Comparing to the general exponential function $y=a^{x}$, is $a>1$ or is $0<a<1$? $0<a<1$.
b) What is the y-intercept? \qquad $(0,1)$ - Is there an x-intercept? no .
c) Are the functions increasing or decreasing? decreasing 3 \qquad .

