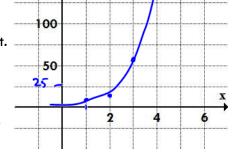

Investigating Exponential Relationships

The temperature data collected by a temperature probe has been recorded in the following table.


- a) Calculate the 1st Differences \rightarrow ($y_2 y_1$)
- **b)** Calculate the 2^{nd} Differences \rightarrow (1st Diff₂ 1st Diff₁)
- c) Calculate the Ratio of Successive y-values \rightarrow $(y_2 \div y_1)$
- d) Plot the (x, y) coordinates and draw the graph.

x	у	1 st Differences	2 nd Differences	Ratio of Successive y-values
0	2			
1	6	4		6÷2=3
2	18	12	8	18÷6 = 3
3	54	36	24	54÷1? = 3
4	162	(08)	72	62÷54=3
5	486	486-162 = 324	216	486 - 162=3

In an <u>exponential</u> relation, for equal steps of x, neither the 1st or 2^{nd} differences are <u>constant</u>, but the <u>rotios</u> of consecutive <u>y-values</u> are constant.

The graph ______ rapidly as you move to the right on the x-axis, and approaches a ______ line.

This is an example of exponential GROWTH.

<u>TERMINOLOGY</u>

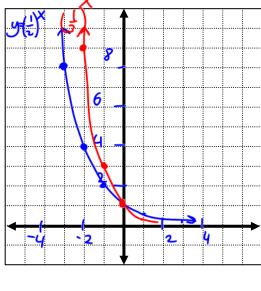
Exponential Growth: Non-linear growth represented by an exponential relation and a graph with a rapidly increasing upward curve

graph with a rapidly <u>decreasing</u> growth represented by an exponential relation and a

An **EXPONENTIAL FUNCTION** is a function with a $\sqrt{qriqble}$ in the exponent. $y = a^x$

 $y = \left(\frac{2}{3}\right)^x$ Some examples would be $y = 2^x$ $y = 10^x$

1. Sketch the graphs of $y = 2^x$ and $y = 3^x$ on the same axe


	• •	,	,	
X	$y = 2^x$		X	$y = 3^x$
-3	0.125		-3	0.037
-2	0.25		-2	0.111
-1	0.5		-1	0.333
0	1		0	1
1	2		1	3
2	4		2	9
3	8		3	27

i	y	= 3 ^x	y=	2×	
	4	/	11		
	8		L		
	6 _		-		
			/		
	4_	/	/		
		1/			
	2				
		//			
-4	-2	7		ч	
		L			

- a) Comparing to the general exponential function $y = a^x$, is a > 1 or is 0 < a < 1?
- b) What is the y-intercept? (0,1) . Is there an x-intercept? no .

 c) Are the functions increasing or decreasing? increasing.
- 2. Sketch the graphs of $y = \left(\frac{1}{2}\right)^{x}$ and $y = \left(\frac{1}{3}\right)^{x}$ on the same axes

		(-	/	(0)
	х	$y = \left(\frac{1}{2}\right)^x$	<i>x</i>	$y = \left(\frac{1}{3}\right)^x$
	-3	8	-3	27
	-2	4	-2	9
	-1	2_	-1	3
(0	1 8-in	0	1
	1	0.5	1	0333
	2	0.25	2	0,111
	3	0.125	3	0.937

- a) Comparing to the general exponential function $y = a^x$, is a > 1 or is 0 < a < 1? 0 < a < 1?
- b) What is the y-intercept ? (0,1) Is there an x-intercept? $\underline{ no}$.
- c) Are the functions increasing or decreasing? decreasing?