MEDIAN
Median: A line segment from a vertex to the midpoint of the opposite side.

Ext. Plot and connect the points $J(4,0), O(-5,2)$ and $B(1,4)$ on the grid provided.
Median from J to $O B$

1. Determine the midpoint of $O B$ algebraically.

$$
F(x, y)=\left(\frac{-5+1}{2}, \frac{2+4}{2}\right)=(-2,3)
$$

2. Join J to that midpoint. Calculate the slope of the median. (Remember, you have two points: $J(4,0)$, and the midpoint at $(-2,3)$.

$$
m_{F J}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3-0}{-2-4}=\frac{3}{-6}=-1 / 2
$$

3. Determine the equation of the median in $y=m x+b$ form.
slope T a point $J(4,0)$

$$
\begin{aligned}
& y=m(x-p)+9 \\
& y=-0.5(x-4)+0 \\
& y=-0.5 x+2
\end{aligned}
$$

\square

$$
\stackrel{\downarrow}{p} a
$$

$$
\frac{1}{2}=05
$$

Median from O to $J B$:
Steel: Find midpoint

$$
U(x, y)=\left(\frac{4+1}{2}, \frac{0+4}{2}\right)=(2.5,2)
$$

Steps: Find the slope

$$
m_{ \pm 0}=\frac{2-2}{-5-2.5}=0
$$

Step 3.

$$
\begin{aligned}
& y=m(x-p)+q u(2.5,2) \\
& y=0(x-2.5)+2 \\
& y=2
\end{aligned}
$$

Step: $N(x, y)=\left(\frac{4+(-5)}{2}, \frac{0+2}{2}\right)=(-0.5,1)$
Step 2: $m_{N B}=\frac{4-1}{1-(-0.5)}=\frac{3}{1+0.5}=\frac{3}{1.5}=2$
Step 3: $y=m(x-p)+q \quad m=2 \quad N(-0.5,1)$

$$
\begin{aligned}
& y=2[x-(-0.5)]+1 \\
& y=2(x+0.5)+1 \\
& y=2 x+1+1
\end{aligned} \quad \therefore y=2 x+2
$$

CENTROID

The three medians join at the: \qquad
ALTITUDE (height)

Altitude: The perpendicular line segment from a vertex to the line that contains the opposite side.

Ex. Plot and connect the points $B(-4,-2), \mid(2,8)$ and $G(8,-2)$ on the grid provided.
Altitude from B:

1. Determine the slope of IG .

Altitude from :
$x=2$

Step: $m_{B 1}=\frac{-2-8}{-4-2}=\frac{-10}{-6}=5 / 3 m_{\text {altitude }}=3 / 5$
Step 2: $y=m(x-p)+q \quad m=-3 / 5 \quad G(8,-2)$

$$
y=-0.6(x-8)+(-2)
$$

$$
\frac{y=-0.6 x+4.8-2}{y=-0.6 x+2} \text { for } y=\frac{-3}{5} x+2
$$

The three altitudes join at the: \qquad ORTOCENTER

PERPENDICULARBISECTORS

Perpendicular Bisector: a line (or line segment) that is perpendicular to a segment at its midpoint.

Ex. Plot and connect the points $L(1,4), A(-5,2)$ and $P(3,-2)$ on the grid provided.

Perpendicular Bisector of LA:

$$
\begin{aligned}
& \text { 1. Determine the midpoint of LA. } \\
& W(x, y)=\left(\frac{-5+1}{2}, \frac{2+4}{2}\right)=(-2,3) \text { V }
\end{aligned}
$$

2. Determine the slope of $L A$.

$$
\begin{aligned}
& m_{L A}=\frac{4-2}{1-(-5)}=\frac{2}{1+5}=\frac{2}{6}=\frac{1}{3} \\
& m_{\text {Right bisector }}=\frac{-3 \rightarrow \text { rise }}{1} \rightarrow \text { run }
\end{aligned}
$$

3. Draw a perpendicular line segment through the midpoint of LA. Determe the slope of right bisector. (The opposite reciprocal of the slope of line segment LA)

$$
m_{R B}=-3
$$

4. Determine the equation of this perpendicular bisector. Remember, you have the slope and one point: slope $=-3$ _ and the midpoint $(2,3) \quad P ; 7^{9}$

$$
\begin{aligned}
& y=m(x-p)+9 \quad m=-3 \quad(-2,3) \\
& y=-3[x-(-2)]+3 \\
& y=-3(x+2)+3 \\
& y=-3 x-6+3 \\
& y=-3 x-3
\end{aligned}
$$

Perpendicular Bisector of $A P$:
Step: Midpoint of $A(-5,2) P(3,-2)$

$$
E(x, y)=\left(\frac{-5+3}{2}, \frac{2+(-2)}{2}\right)=(-1,0)
$$

Step 2:

$$
m_{A P}=\frac{-2-2}{3-(-5)}=\frac{-4}{8}=\frac{-1}{2}
$$

$$
m_{\text {bisector }}=2
$$

Step: $y=m(x-p)+q \quad m=2 \quad E(-1,0)$

$$
\begin{aligned}
& y=2[x-(-1)]+0 \\
& y=2(x+1) \\
& y=2 x+2
\end{aligned}
$$

Perpendicular Bisector of LP:
Step: Midpoint of $\alpha(1,4) P(3,-2)$

$$
T(x, y)=\left(\frac{1+3}{2}, \frac{4+(-2)}{2}\right)=(2,1)
$$

Step 2: $m_{L P}=\frac{-2-4}{3-1}=\frac{-6}{2}=-3$

$$
m_{\text {bisector }}=1 / 3
$$

Step 3: $y=m(x-p)+q \quad m=\frac{1}{3} T(2,1)$

$$
y=\frac{1}{3}(x-2)+1
$$

$$
\begin{aligned}
& y=\frac{1}{3} x-\frac{2}{3}+1 \\
& y=\frac{1}{3} x+\frac{1}{3}
\end{aligned}
$$

The three perpendicular bisectors join at the: CIRCUMCENTER

