Optimize: Determine the best solution while adhering to given constraints

Concept 1: Maximum Deck Size – MAXIMIZING THE AREA

Complete the table below:

Rectangle	Length (m)	Width (m)	Perimeter (m)	Area (m ²)
А	15	5	2(15+5) = 40	15 x 5 = 75
В	12	8	2(12+8) = 40	$12 \times 8 = 96$
С	10	10	2(10+10) = 40	10×10=100
D	18	2	2(18+2) = 40	$12 \times 2 = 36$
Е	9	11	2(9+11) = 40	9×11=99

OBSERVATION:

The rectangles above have the same <u>perimeter</u>.

Rectangle <u>C</u> has the greatest area.

CONCLUSION:

When enclosing **FOUR SIDES**, the maximum rectangular area for a fixed perimeter is obtained by forming a <u>59 vace</u>.

Solved Example: Find the maximum area for a rectangular four-sided area you can enclose with a 60 m rope at a beach. [Hint: Recall that the four-sided shape will be a SQUARE.]

Solution: The square will provide the maximum area. We need to form a square that has a 60m perimeter. 1 side of the square = 60 / 4 = 15The enclosed area will by 15 by 15; thus, its area is $15 \times 15 = 225 \text{ m}^2$.

<u>**Try these</u>**: Find the dimensions (integer values) of the largest rectangular area that can be made given the following perimeters:</u>

a) $48m$ $48m$ of finding w $w = 48 \div 4$ w w = 12m $w\therefore It's 12^{v} by 12mArea is 144m^{2}$	b) $100m$ w = 100 + 4 = 25 $It's 25mLy 25m 625m^2 0.009.$
c) 36 m $w = 36 \div 4$ w = 9m \therefore It's 9 ⁿ by 9m 9 Area 5 8(m ²)	d) 144 m $\omega = 144 \div 4$ = 36m $\therefore It's 36m by 36n 36$

Concept 2: Minimum Perimeter for a Fixed Area – MINIMIZING THE PERIMETER

Complete the table below:

Rectangle	Length (m)	Width (m)	Area (m ²)	Perimeter (m)
A	2	18	2 x 18 = 36	2(2+18) = 40
В	3	12	$3 \times 12 = 36$	2(3+h)=30
С	4	9	4×9=36	2(1+9) = 26
D	6	6	6×6=36	2(6+6)=74
E	9	4	$9_{1\times 4} = 36$	2(9+4)=26

OBSERVATION:

The rectangles above have the same \underline{QCQ} .

Rectangle \mathcal{D} has the least perimeter area.

CONCLUSION:

When enclosing **FOUR SIDES**, the minimum perimeter for a given rectangular area is obtained by forming a <u>Square</u>

Solved example: Find the dimensions of the rectangle that will provide the least perimeter if the area is 81 m².

Solution: The square will provide the least perimeter. We know the area of this square which is 81. One side of the square is $=\sqrt{81} = 9$

Therefore, it is a 9 by 9 square that will give the least perimeter.

<u>Try these</u>: Find the dimensions (integer values) of the smallest rectangular perimeter that can be made given the following areas:

a) 36m ²	b) 100 m ²
$\omega^2 = 36$ (ω	$\omega^2 = 100$
$\sqrt{\omega^2} = \sqrt{36}$ w	$\sqrt{w^2} = \sqrt{100}$
W=6 , Tt's 6May 6	
	_'. It's lon by lon.
c) 144 m ²	d) 256 m ²
$w^{2} = 144$	$W^{2} = 256$
$\sqrt{\omega^2} = \sqrt{144}$	$\sqrt{\omega^2} = \sqrt{256}$
W = 12 LTs 12m by 1 lm	w=16 . It's 16mby 16m

Concept 3: MAXIMUM 3-SIDED AREA

CONCLUSION:

When enclosing **THREE SIDES**, the **maximum area** for a given rectangular area is obtained by forming a rectangle whose length is twice its width.

Let "w" represent the width "2w" represent the length.

Solved example: Your manager asked you to create a three-sided rectangular area at the beach with a 100 m rope that will have the greatest area. What are the dimensions?

Solution: Since this is a three-sided enclosing, we will use the following figure:

Your turn:

Organizers of an outdoor music festival want to enclose a rectangular dining area against a large barn. They have 80 m of rope to use as a fence. Determine the length and width of a fence that will provide the maximum dining area. Use words and diagrams in your answer.

PRACTICE

1. An inbox tray has 3 walls and an open side on one of the longer sides. Determine the maximum area of the tray if all three walls total to a length of 812 mm.

2. The perimeter of a rectangular piece of cardboard is 46 centimetres. Determine the dimensions that maximize the area.

3. The maximum area of a fenced in pool deck is 1024 m². Determine the length of fencing that is required.

$$w^{2} = 1024$$

$$w^{2} = \sqrt{1024}$$

$$w^{2} = \sqrt{1024}$$

$$w = 32$$

$$w^{2} = \sqrt{1024}$$

4. Three sides of a lookout deck have a railing, while the fourth side is open. Determine the maximum area if there is 648 cm of railing.

5. The area of a rectangular box is 722 500 mm². Determine the dimensions that minimize the perimeter.

$$w^{2} = 722500$$

 $\sqrt{w^{2}} = \sqrt{722500}$
 $w = 850 \text{ mm}$