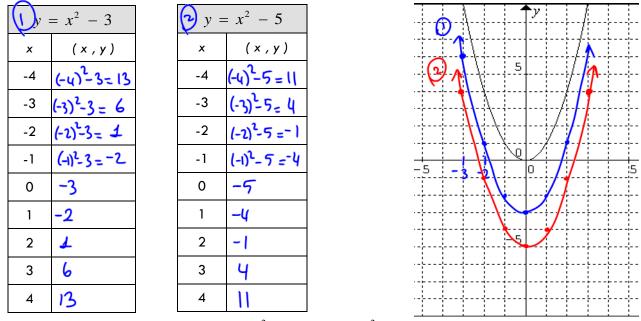

The Quadratic Relation $y = x^2 + k$

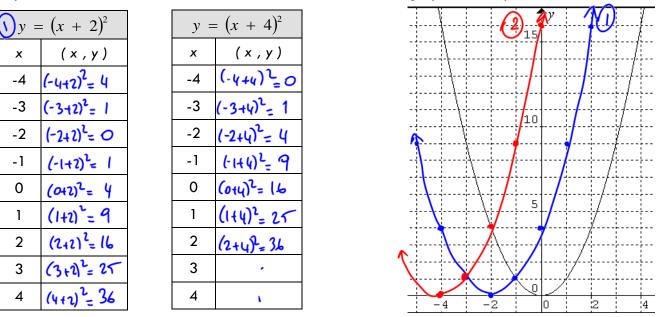
INVESTIGATION 1: Graphing $y = x^2 + k$, when 'k' is positive


Complete the table of values. Use a different colour to sketch the graph of each parabola on the axes.

Observation - How do the graphs of $y = x^2 + 2$ and $y = x^2 + 4$ differ from the standard graph? They a shifted up

INVESTIGATION 2: Graphing $y = x^2$, when 'k' is negative.

Complete the table of values. Use a different colour to sketch a graph of each parabola on the axes.


Observation - How do the graphs of $y = x^2 - 3$ and $y = x^2 - 5$ differ from the standard graph? They're shifted Down

Conclusion: The value of 'k' determines the <u>Vertical</u> position of the parabola. if 'k' is positive, the parabola SHIFTS <u>UP</u> 'k' units, if 'k' is negative, the parabola SHIFTS <u>DOWN</u> 'k' units.

The Quadratic Relation $y = (x-h)^2$

INVESTIGATION 1: Graphing $y = (x-h)^2$, when 'h' is positive

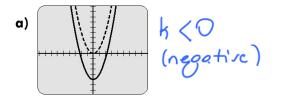
Complete the table of values. Use a different colour to sketch the graph of each parabola on the axes.

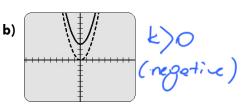
Observation - How do the graphs of $y = (x + 2)^2$ and $y = (x + 4)^2$ differ from the standard graph? Same graphs but shifted left horizontolly INVESTIGATION 2: Graphing $y = (x-h)^2$, when 'h' is negative.

Complete the table of values. Use a different colour to sketch a graph of Aach parabola on the axes.

$\mathbf{O} y = (x - 3)^2$	$\mathbf{b} y = (x - 1)^2$	
x (x,y)	x (x,y)	
$-4 \left(-4 - 3\right)^2 = 49$	$-4 (-4-1)^2 = 25$	
$-3 (-3-3)^2 = 36$	-3 $(-3-1)^2 = 16$	······································
-2 (-2-3)2=25	$-2(-2-1)^2=9$	
-1 $(-1-3)^2 = 1.6$	-1 (-1-0 ² = 4	
$(-3)^2 = 9$	$0 (-1)^{2} = 1$	
$1 (1-3)^2 = 4$	$1 (0)^2 = 0$	
2 $(2-3)^2 = 1$	$2(2-1)^2 = 1$	
3 (3-3) ² -0	3 (3-1)2- 4	
4 $(4-3)^{2} = 1$	4 $(u-1)^{2}$ 9	

Observation - How do the graphs of $y = (x - 3)^2$ and $y = (x - 1)^2$ differ from the standard graph? Some graphs but shifted right for the standard graph? Conclusion: The value of th' determines the horizontal of the parabola.


Conclusion: The value of 'h' determines the <u>horizortal</u> of the parabola. if 'h' is positive, the parabola SHIFTS <u>RIGHT</u> 'h' units.


if 'h' is negative, the parabola SHIFTS $\angle ETT$ 'h' units.

Quadratic $y = x^2 + k$ Practice

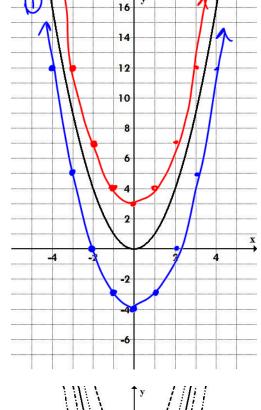
1. In each picture, the graph of $y = x^2$ is shown as a dotted parabola (standard position). The solid parabola is the graph of a quadratic relation of the form $y = x^2 + k$.

For each solid parabola, is the value of k positive or negative? Explain your answer.

2. On the same axis, graph the following functions and identify the vertex for each:

$\bigcup y = x^2 - 4$		
x	(x,y)	
-4	$(-4)^2 - 4 = 12$	
-3	$(-3)^2 - 4 = 5^-$	
-2	(-2) ² -4 = 0	
-1	(-1) ² -4= -3	
0	(o) ² -4=-4	
1	$(1)^{2} - 4 = -3$	
2	$(2)^{2} - 4 = 0$	
3	(3) ² -4=5	
4	(4) - 4 = 12	

2 y	$= x^{2} + 3$
x	(x,y)
-4	(-4)2+3= 19
-3	(-3) ² +3=12
-2	(-2) ² +3=7
-1	(-1) ² +3 = 4
0	$(0)^{2}+3=3$
1	(1)2+3=4
2	7
3	12_
4	19

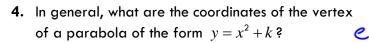

Vertex (🜔 , -4)

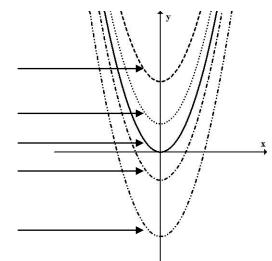
Vertex(Օ , 3)

e

C

a

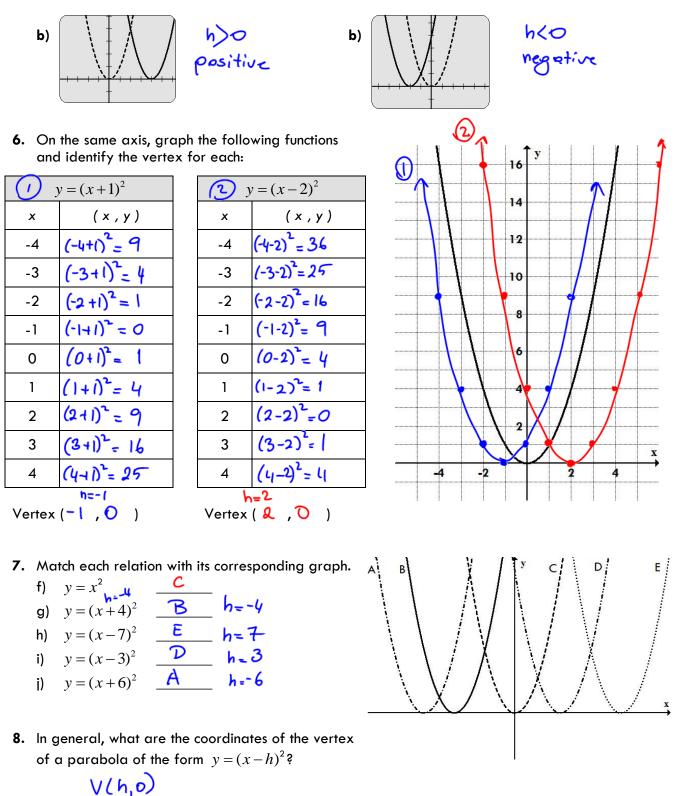



- 3. Match each relation with its corresponding graph.
 - a) $y = x^2$
 - b) $y = x^2 2$

c)
$$y = x^2 + 2$$

d)
$$y = x^2 - 6$$

e) $y = x^2 + 6$



V(O, K)

Quadratic $y = (x-h)^2$ Practice

5. In each picture, the graph of $y = x^2$ is shown as a dotted parabola (standard position). The solid parabola is the graph of a quadratic relation of the form $y = (x - h)^2$.

For each solid parabola, is the value of 'h' positive or negative? Explain your answer.

