\qquad

THE SINE LAW

So far, we've used trigonometric ratios to solve right angle triangles. The sine rule _ can be used in any triangle (not just right-angled triangles) where a side and its opposite angle are known.

\mathbf{a}, \mathbf{b} and \mathbf{c} are sides.
A, B and \mathbf{C} are angles.
$\frac{a}{\sin (A)}=\frac{b}{\sin (B)}=\frac{c}{\sin (C)}$
or $\quad \frac{\sin (A)}{a}=\frac{\sin (B)}{b}=\frac{\sin (C)}{c}$
(Side a faces angle A,
side b faces angle B and
side c faces angle C).
(for finding sides)
(for finding angles)

KEY WORDS

Sine rule Side Opposite Length

CASE 1) FINDING SIDE
 GIVEN \rightarrow ANGLE - ANGLE - SIDE

If you need to find the length of a side, you need to use the version of the Sine Rule where the lengths are on the top:

$$
\frac{a}{\sin (A)}=\frac{b}{\sin (B)}
$$

You will only ever need two parts of the Sine Rule formula, not all three.
You will need to know at least one pair of a side with its opposite angle to use the Sine Rule.

Solved Example: Determine the length of x:

Step 1 Start by writing out the Sine Rule formula for finding sides:

$$
\frac{a}{\sin (A)}=\frac{b}{\sin (B)}
$$

Step 2 Fill in the values you know, and the unknown length:

$$
\frac{x}{\sin \left(80^{\circ}\right)}=\frac{7}{\sin \left(60^{\circ}\right)}
$$

Remember that each fraction in the Sine Rule formula should contain a side and its opposite angle.

Step 3 Solve the resulting equation to find the unknown side, giving your answer to 3 significant figures:

$$
\begin{aligned}
\frac{x}{\sin \left(80^{\circ}\right)} & =\frac{7}{\sin \left(60^{\circ}\right)} \quad\left(\begin{array}{c}
\text { multiply by } \sin \left(80^{\circ}\right) \text { on both } \\
\text { sides })
\end{array}\right. \\
x & =\frac{7}{\sin \left(60^{\circ}\right)} \times \sin \left(80^{\circ}\right) \\
x & =7.96
\end{aligned}
$$

\qquad

CASE 2) FINDING ANGLE

GIVEN \rightarrow SIDE - SIDE - OPPOSITE ANGLE

If you need to find the size of an angle, you need to use the version of the Sine Rule where the angles are on the top:

$$
\frac{\sin (A)}{a}=\frac{\sin (B)}{b}
$$

As before, you will only need two parts of the Sine Rule, and you still need at least a side and its opposite angle.

PRACITCE:

1) Find the measure of $\angle C$ to the nearest tenth of a degree.

SSA

$$
\begin{array}{r}
\text { sA } \times \frac{\sin \theta}{4 \theta}=\frac{\sin 55}{55} \times 40 \\
\sin \theta=\frac{\sin 55 \times 40}{55} \\
\sin ^{-1}\left(\frac{\sin 55 \times 40}{55}\right)=\theta
\end{array}
$$

SOLVE
To determine all unknown angles and sides.

$$
\theta \doteq 36.6^{\circ}
$$

$$
\therefore \theta \text { is } 36.6^{\circ}
$$

2) Find the measure of side e to the nearest tenth.

$$
\frac{e}{\sin 49}=\frac{57}{\sin \alpha} \Rightarrow \frac{e}{\sin 49}=\frac{57}{\sin 59}
$$

$$
e=\frac{57}{\sin 59} \times \sin 49 \quad \therefore \text { e is } 50.2 \mathrm{~m}
$$

$$
\begin{aligned}
& \alpha=180-49-72 \\
& \alpha=59
\end{aligned}
$$

$$
\begin{aligned}
\alpha+49+57 & =180 \\
\alpha & =180-49-72 \\
\alpha & =59
\end{aligned}
$$

$$
e \doteq 50.2 \mathrm{~m}
$$

3) Solve the triangle $A B C$ given $\angle B=57^{\circ}, a=17 \mathrm{~cm}, b=18 \mathrm{~cm}$

Steps
(1) Find θ using sine low
(2) use sum of angles
in a triangle to solve α
(3) find c using sine law

4) Solve for the unknown value to the nearest tenth
$\sin 42$
a) X

$$
\begin{aligned}
& \frac{a}{\sin 42^{\circ}}=\frac{52}{\sin 68^{\circ}} \times \sin 42 \\
& a=\frac{52 \times \sin 42}{\sin 68} \quad a=37.5
\end{aligned}
$$

$$
\sin B=\frac{\sin 84 \times 11}{19}
$$

5) Find the measure of $\angle C$ to the nearest degree

$$
\text { b) } \frac{1 \times \sin B}{1 / 1}=\frac{\sin 84^{\circ}}{19} \times 11
$$

$$
\left.\begin{array}{l}
\frac{c}{\sin 70.6}=\frac{18}{\sin 57} \\
c=\frac{18 \times \sin 70.6}{\sin 57} \\
c=20.2 \mathrm{~cm}
\end{array}\right\} c \text { is } 20.2 \mathrm{~cm}
$$

$$
\sin ^{-1}\left(\frac{\sin 84 \times 11}{0}\right)=B
$$

$$
\begin{aligned}
& \text { (1) } \begin{array}{r}
\frac{\sin \alpha}{5}=\frac{\sin 47}{4} \\
\sin \alpha=\frac{\sin 47 \times 5}{4} \\
\sin ^{-1}\left(\frac{\sin 47 \times 5}{4}\right)=\alpha \\
\alpha=66^{\circ}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { in. } \\
& 15 \times \frac{\sin \theta}{15}=\frac{\sin 72}{18} \times 15 \\
& \sin \theta=\frac{\sin 72 \times 15}{18} \\
& \sin ^{-1}\left(\frac{\sin 72 \times 15}{18}\right)=\theta \\
& \theta \doteq 52^{\circ} \\
& \therefore \angle C(\theta) \text { is } 52^{\circ}
\end{aligned}
$$

Day 4: The Sine Law
Unit 1: Trigonometry
6) Find the measure of the indicated side to the nearest tenth.
a)

$\operatorname{sinf9} 9 \times \frac{a}{\sin 39}=\frac{30}{\sin 65} \times \sin 39$

$$
\begin{aligned}
& a=\frac{30 \times \sin 39}{\sin 65} \\
& a=20.8 \mathrm{ft}
\end{aligned} \quad \begin{gathered}
\therefore \text { Side } a \\
20.8 \mathrm{ft}
\end{gathered}
$$

8

$$
\begin{aligned}
\sin 67 \times \frac{i}{\sin 67} & =\frac{15}{\sin 83} \times \sin 67 \\
i & =\frac{15 \sin 67}{\sin 83} \\
i & =13.9 \mathrm{~cm}
\end{aligned}
$$

7) Solve each triangle $A B C$.
a)

Step: $\frac{\theta=180-57-38}{\frac{\theta=85^{\circ}}{33}} \frac{\frac{\text { step } 3}{\frac{c}{\sin 38}}=\frac{33}{\sin 57}}{}$
b) Given $A=66^{\circ}, C=39^{\circ}, b=10$

$$
\begin{aligned}
& \frac{\text { Step }}{\theta} \\
& \theta=180-66-39 \\
& \theta=75^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\frac{5+e p}{} 2}{9}=\frac{10}{\sin 75} \\
& 9=\frac{10 \times \sin 66}{\sin 75}
\end{aligned}
$$

$$
\text { Step } 3
$$

$$
\frac{c}{\sin 39}=\frac{10}{\sin 75}
$$

$$
c=\frac{10 \sin 39}{\sin 75}
$$

$$
\begin{aligned}
& a=\frac{33 \times \sin 85}{\sin 57} \\
& a \doteq 39.2 \mathrm{ft}
\end{aligned}
$$

$$
\begin{array}{r}
c=\frac{33 \times \sin 38}{\sin 57} \\
\frac{c=24.2 \mathrm{ft}}{} 15 \\
\therefore \begin{array}{l}
\angle A(v) \text { is } 85^{\circ} \\
\text { Side } a \\
\text { side } c
\end{array} \text { is } 24.2 \mathrm{ft} \\
\text { sid } \mathrm{ft}
\end{array}
$$

$$
a \equiv 9.5
$$

$$
c \div 6.5
$$

Step 2 $\frac{a}{\sin 85}=\frac{33}{\sin 57}$
\qquad
8) a) Use the sine ratio to find the value of x, to the nearest tenth

$$
\begin{array}{r}
\sin 50=\frac{O p p}{H_{y p}} \Rightarrow \sin 50=\frac{8}{x} \Rightarrow x=\frac{8}{\sin 50} \\
x=10.4
\end{array}
$$

b) Use the sine law to find the value of x, to the nearest tenth

$$
\frac{x}{\sin 90}=\frac{8}{\sin 50} \Rightarrow x=\frac{8 \sin 90}{\sin 50} \Rightarrow x=10.4
$$

9) Two guy wires 27 m and 15 m in length are to be fastened to the top of a TV tower from two points B and C as shown. The angle of elevation to the top of the tower of the longer wire is 32°. How far apart are points B and C and how tall is the tower?

