THE SINE LAW
So far, we have used trigonometric ratios to solve right angle triangles. The sine rule can be used in any triangle (not just right-angled triangles) where a side and its oppositangle are known.

KEY WORDS
Sine rule Side
Opposite Length

CASE 1) FINDING SIDE: ANGLE - ANGLE - SIDE
If you need to find the length of a side, you need to use the version of the Sine Rule where the lengths are on the top:

$$
\frac{a}{\sin (A)}=\frac{b}{\sin (B)}
$$

You will only ever need two parts of the Sine Rule formula, not all three.
You will need to know at least one pair of a side with its opposite angle to use the Sine Rule.
Example 1: Determine the length of x :

, A

$$
\frac{x}{\sin 80}=\frac{7}{\sin 60}
$$

$$
x \div \sin 80=7 \div \sin 60
$$

Step 2: To cancel out the division by $\sin 80$ on heft Side, multiply both sides by $\sin 80$.

$$
\begin{array}{rl}
x \div \sin 80 \times \sin 80 & =7 \div \sin 60 \times \sin 80 \\
x & 8 \\
\text { approximately }
\end{array}
$$

\therefore Side x is approximately 8 units.

CASE 2) FINDING ANGLE: SIDE - SIDE - OPPOSITE ANGLE
If you need to find the size of an angle, you need to use the version of the Sine Rule where the angles are on the top:

$$
\frac{\sin (A)}{a}=\frac{\sin (B)}{b}
$$

As before, you will only need two parts of the Sine Rule, and you still need at least a side and its opposite angle.

Example 2:
Determine the angle to the nearest degree:

Step: Set up the equation

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin B}{b} \\
\frac{\sin A}{8} & =\frac{\sin 75}{10} \\
\sin A \div 8 & =\sin 75 \div 10
\end{aligned}
$$

Step 2: isolate $\sin A$ by multiplying both sides by 8 .

$$
\begin{aligned}
\sin A \div 8 \times 8 & =\sin 75 \div 10 \times 8 \\
\sin A & =0.7727 \\
\sin ^{-1}(0.7727) & =A \\
A & \cong 51^{\circ}
\end{aligned}
$$

\therefore Angle m is approximately 51°.
\qquad

PRACTICE:

1) Find the measure of $\angle C$ to the nearest tenth of a degree.

$\sin C \div 40 \cdot 40=\sin 55 \div 55.40$
To determine all unknown angles and sides.

$$
\sin C=0.5957
$$

$$
\sin ^{-1}(0.5957)=c
$$

$$
c \cong 37^{\circ}
$$

2) Find the measure of side e to the nearest tenth.

3) Solve the triangle $A B C$ given $\angle B=57^{\circ}, a=17 \mathrm{~cm}, b=18 \mathrm{~cm}$
 Step: Find measure of $\angle A$.

Step 2 : Find measure of side C $\sin A \div 17=\sin 57 \div 18$
$\sin A \div 17 \times 17=\sin 57 \div 18 \times 17$ $\sin A=0.7921$
$\sin ^{-1}(0.7921)=A$
$c \div \sin 71=18 \div \sin 57$

4) Solve for the unknown value to the nearest tenth
$\sin 42 \times \frac{a}{\sin 42^{\circ}}=\frac{52}{\sin 68^{\circ}} \times \sin 42$

$$
a \doteq 37.5
$$

5) Find the measure of $\angle C$ to the nearest degree

$$
\begin{aligned}
\text { b) } \cdot \frac{\sin B}{11} & =\frac{\sin 84^{\circ}}{19} \cdot 11 \quad a=17, b=18, c=20 \\
\sin B & =0.5758 \\
\sin ^{-1}(0.5758) & =B \\
B & =35.2
\end{aligned}
$$

\qquad
6) Find the measure of the indicated side to the nearest tenth.
a)

b)

$$
\sin 67 \cdot \frac{i}{\sin 67}=\frac{15}{\sin 83} \cdot \sin 67
$$

$$
i \doteq 13.9
$$

7) Solve each triangle $A B C$.
a)

Step: side C

$$
\begin{aligned}
c \div \sin 38 & =33 \div \sin 57 \\
c \div \sin 38 \times \sin 39 & =33 \div \sin 57 \times \sin 38 \\
c & =24
\end{aligned}
$$

Step 2: side a $\angle A=180-57-38$

$$
\angle A=85^{\circ}
$$

$$
\therefore \angle A=85^{\circ} ; \angle B=57 ; \angle C=38^{\circ}
$$

$$
\begin{gathered}
\text { ven } \begin{array}{c}
A=66^{\circ}, C=39^{\circ}, b=10 \\
\angle B=180-66-39 \\
\angle B=75^{\circ} \\
c \text { Step: Find side a } \\
a \div \sin 66=10 \div \sin 75 \\
\frac{a}{a}=10 \div \sin 75 \times \sin 66 \\
(a \doteq 9
\end{array}
\end{gathered}
$$

Step 2 : Find side c

$$
a \div \sin 85 \times \sin 85=33 \div \sin 57 \times \sin 85
$$

$$
a=39 \mathrm{ft} \quad b=33 \mathrm{ft}, c=24
$$

$$
\begin{aligned}
c \div \sin 39 & =10 \div \sin 75 \\
c & =10 \div \sin 75 \times \sin 39 \\
C \doteq 7 & \therefore \angle A=66
\end{aligned} a=9
$$

8) Two guy wires 27 m and 15 m in length are to be fastened to the top of a TV tower from two points B and C as shown. The angle of elevation to the top of the tower of the longer wire is 32°. How far apart are points B and C and how tall is the tower?

Stope: Find $\angle C$

$$
\begin{gathered}
\sin C \div 27=\sin 32 \div 15 \\
\sin C=\sin 32 \div 15 \times 27 \\
\sin C=0.9539 \\
\sin ^{-1}\left(0.95^{\circ} 39\right)=c \\
\frac{C}{C}=73^{\circ}
\end{gathered}
$$

Step 2 : Find side a

$$
\begin{aligned}
& \angle A=180-32-73 \\
& \angle A=75
\end{aligned}
$$

$$
\begin{aligned}
& a \div \sin 75=15 \div \sin 32 \\
& a=15 \div \sin 32 \times \sin 75 \\
& a=27.34
\end{aligned}
$$

$$
\begin{aligned}
15 \cdot \sin 73 & =h \\
h & =14.34
\end{aligned}
$$

$\therefore B$ and C are 27.34 m apart; the height of the tower 1 s 14.34 m .

