‘Intersecting' Lines!?!

- Things that Make You Go Hmmmm...

3. What does this point represent in the context of this word problem?
It's when Ned catches up with Ted

Do 2 lines always intersect in one point? Check it!
Yes, zoom in or out two lines only intersect in one point.

Task 1: One Solution

- Click/ touch on the " x " to delete the equations.
- Change the equation to $y=-2 x+6$, and then change the colour of the line to black.
- Change the equation to $y=4 x-5$, then change the colour of the line to orange.

4. Sketch the two graphs on the grid provided.
5. Why is there one solution to the linear system $\begin{aligned} & y=-2 x+6 \\ & y=4 x-5\end{aligned}$? B / c there is only one intersection Point.

6. How can you tell by looking at the equations that there will be one solution to the linear system?

They both have different slopes
7. Predict the equation of another line which would have one solution with $y=-2 x+6$.

$$
y=5 x-6
$$

Verify your answer by graphing it on the Desmos.

- Using the green line, change the equation to:

$$
2 x-5 y=1
$$

- Using the blue line, change the equation to:

$$
4 x-6 y=3
$$

8. Sketch the two graphs on the grid provided.
9. Why is there one solution to the linear system $\begin{aligned} & 2 x-5 y=1 \\ & 4 x-6 y=3\end{aligned}$? B / c there is only one intersection Point.

10. How can you tell by looking at the equations that there will be one solution to the linear system?

If the first ratios are different, ONE SOLUTION. $\frac{2}{4} \neq \frac{-5}{-6} \neq \frac{1}{3}$
11. Predict the equation of another line which would have one solution with $2 x-5 y=1$.
$3 x-10 y=5$
$6 x+10 y=2$
Verify your answer by graphing it on the Desmos.
$2 x-5 y=1$
$a x+b y=c$

Task 2: No Solution

- Using the green line, change the equation to: $y=3 x-4$
- Using the blue line, change the equation to: $y=3 x+1$

12. Sketch the two graphs on the grid provided.
13. Why is there no solution to the linear system $\begin{aligned} & y=3 x-4 \\ & y=3 x+1\end{aligned}$?

Because the lines do not intersect.

14. How can vol tell he looking at the animations that there will not he a solution to the linear system?

They both have the same slope and different \mathbf{y}-intercepts.
15. Predict the equation of another line which would have no solution with $y=3 x-4$.

$$
\mathbf{y}=\mathbf{3 x}-\mathbf{1}
$$

Verify your answer by graphing it on the Desmos.

- Using the green line, change the equation to:

$$
3 x-2 y=8
$$

- Using the blue line, change the equation to:

$$
6 x-4 y=-5
$$

16. Sketch the two graphs on the grid provided.
17. Why is there no solution to the linear system $\begin{aligned} & 3 x-2 y=8 \\ & 6 x-4 y=-5\end{aligned}$?

Because two lines are parallel and do not intersect.

18. How can you tell by looking at the equations that there will not be a solution to the linear system?

If the first two Ratios are same but third one is different $\frac{3}{6}, \frac{-2}{-4}, \frac{8}{-5} \Rightarrow \frac{1}{2}=\frac{1}{2} \neq \frac{-8}{5}$
it is a NO SOLUTION
19. Predict the equation of another line which would have no solution with $3 x-2 y=8$.
$15 \mathrm{x}-10 \mathrm{y}=4$
(1) $3 x-2 y=8$
(2) $15 x-10 y=4$
'erify your answer by graphing it on the Desmos.

$$
\begin{aligned}
& \text { (1) } 3 x-2 y=8 \\
& \text { (2) } 9 x-6 y=-8 \\
& \frac{3}{9}, \frac{-2}{-6}, \frac{8}{-8} \Rightarrow \frac{1}{3}=\frac{1}{3} \neq-1
\end{aligned}
$$

Task 3: Many Solutions

- Using the green line, change the equation to:

$$
2 x-3 y=4
$$

- Using the blue line, change the equation to:

$$
4 x-6 y=8
$$

20. Sketch the two graphs on the grid provided.
21. Why are there multiple solutions to the linear system $\begin{aligned} & 2 x-3 y=4 \\ & 4 x-6 y=8\end{aligned}$? Because two lines are coincident. They sit on top of each other.

22. How can you tell by looking at the equations that there will be multiple solutions to the linear system?
If all of the ratios are the same then it is an Infinite

$$
\frac{2}{4}, \frac{-3}{-6}, \frac{4}{8} \Rightarrow \frac{1}{2}=\frac{1}{2}=\frac{1}{2}
$$ (multiple) solution

23. Predict the equation of another line which would have multiple solutions with $2 x-3 y=4$. $6 x-9 y=12$ Verify your answer by graphing it on the Desmos.

SUMMARY

Task 4: Practice

24. Determine the number of solutions each linear system has. Justify your decision.
a. $\begin{array}{lc}3 x-y=5 \\ 2 x+3 y=6 \\ \text { ONE } & \text { b. }\left(\begin{array}{l}3 x+4 y=12 \\ -9 x-12 y=-36\end{array}\right. \\ \text { infinite }\end{array}$

$\times 0.5$
e. $\left(\begin{array}{c}x+2 y=10 \\ 0.5 x+y=8 \\ \text { NON }\end{array}\right.$

f. $\begin{array}{r}3 x-5 y-2=0 \\ 4 x+5 y+2=0\end{array}$
ONE
c. $\begin{aligned} & y=3 x-5 \\ & y=4 x+6\end{aligned}$
ONE X
d. $\left(\begin{array}{l}2 x-3 y=10 \\ -10 x+15 y=-15\end{array}\right.$
NONE //
25. Sarah and Shannon mow lawns during the summer to earn money. They both calculated their startup expenses, operating expenses, and income per hour of mowing. They wrote these equations for their income, I, after h hours of mowing.
$I=10.25 h-125$ Sarah
$I=10.25 h-100$ Shannon
a. What are Shannon's start-up costs? \$100
b. What does Sarah charge per hour? $\$ 10.25$
c. Will Sarah ever earn as much money as Shannon? Justify your decision.

Depending on how many hours Sarah might jet. If Sarah poets os many hours as Shannon will, then she will make less. On the otke-thand if d. Sketch what these two graphs would look like. Sarah gets more hours, she might

26. An air traffic controller is plotting the course of two jets scheduled to land in about 15 minutes. One aircraft is following a path defined by the equation $3 x-5 y=20$ and the other by the equation $18 x=30 y+72$. Should the controller alter the paths of either aircraft? Justify your decision.
(4) (1) $3 x-5 y=20$ Two equations are parallel b / c A and B values in the (2) equation (2) $18 x-30 y=72$ are 6 times those in the (1) equation and C values are differat.

OR
Rearrange both equation in $y=m x+b$ form
(1) $3 x-5 y^{-3 x}=20^{-3 x}$
$\frac{-5 y}{-5}=\frac{-3 x}{-5}+\frac{20}{-5} \quad \frac{18 x}{30} \frac{-72}{30}=\frac{30 y}{30}$
\therefore They have the some slope
and clifferent y int; theodore,
two equations are perdld.
(1) $y=\frac{3}{5} x-4$
(2) $y=\frac{3}{5} x-\frac{12}{5}$

