\qquad

Changing Conditions on Investments \& Loans

Terminology: TERM - The length of time that an investment is held or a loan is carried.
Some Truths About Interest

1. The higher the interest rate, the \qquad MORE interest earned/paid
2. The longer the term of an investment or loan the \qquad MORE interest earned/paid
3. The more frequent the compounding period, the \qquad FASTER interest accrues (grows)
4. For simple interest, doubling an interest rate or term \qquad the total interest. This is because simple interest growth is \qquad constant over time.
5. For compound interest, doubling an interest rate or term \qquad more than doubles the total interest. This is due to the effects of \qquad compounding
eXAMPLE: Changing Interest Rates and Compounding Periods
Joakim would like to have $\$ 8000$ in 5 years. Determine the amount he would need to invest at each rate to reach his goal.
a) 6% per year, compounded quarterly
b) 5.2% per year, compounded monthly
c) 4.8% per year, compounded weekly

6\% compounded quarterly
A = 8000
$P=$?

$$
\begin{aligned}
& i=0.06 \div 4=0.015 \\
& n=5 \text { years } \times 4=20
\end{aligned}
$$

$$
\begin{aligned}
P & =A(1+i)^{-n} \\
& =8000(1+0.015)^{-20} \\
& =5939.76
\end{aligned}
$$

\therefore He needs to invest $\$ 5939.76$
5.2 \% compounded monthly
$A=8000$
$\boldsymbol{P}=$?

$$
\begin{aligned}
& i=0.052 \div 12=0.0043 \\
& n=5 \times 12=60
\end{aligned}
$$

$$
\begin{aligned}
P & =A(1+i)^{-n} \\
& =8000(1+0.0043)^{-60} \\
& =6184.18
\end{aligned}
$$

\therefore He needs to invest
$\$ 618418$
4.8\% compounded weekly
$A=8000$
$P=$?

$$
\begin{aligned}
i= & 0.048 \div 52 \\
n= & 5 \times 52=260 \\
& =A(1+i)^{-n} \\
& =8000(1+0.048 \div 52) \\
& =62013.72
\end{aligned}
$$

\therefore He needs to invest $\$ 6293.72$

