- 4. Fill in the values of **m** and **b** in column #1 and #2.
- 5. Look at the graphs of each line and fill in columns #3 and #4.

The *x*-intercept is defined as the place where a line crosses the *x*-axis. The *y*-intercept is defined as the place where a line crosses the *y*-axis.

6. Find the slope of each of the lines which you have plotted using the $\frac{rise}{run}$ method. It may be helpful to actually sketch a *rise* and a *run* onto your graphs for each of the lines. Record the slopes in column #5.

		Slope	ST	-in+	COLUMN #:			
		. <	1	2	3	4	5	
RELATION			m	b	x - intercept	y - intercept	slope	
Graph #1	a	y = 2x + 4	2	4	(-2,0)	(O ₁ 4)	2	
	b	y = 2x + 2	2	2	(-1,0)	(0,2)	2	
	c	y = 2x	2	0	(0,0)	(0,0)	2	
	d	y = 2x - 4	2	-4	(2,0)	(<i>0</i> ,-4)	2	
Graph #2	a	y = -2x + 4	-2	4	(2,0)	(0,4)	-2	
	b	y = -2x + 1	-2	1	(-1/2,0)	(0,1)	-2	
	с	y = -2x - 1	-2	-+	(Y2)0)	(0 ₁ -1)	-2	
	d	y = -2x - 5	-2	-5	(-5/2 ,0)	<i>(0</i> ,-5)	-2	
Graph #3	a	y = 4x - 2	4	-2	(1/2 10)	(0 ₁ -2)	4	
	b	y = 2x - 2	2	-2	(1,0)	(0,-2)	2_	
	с	y = x - 2	1	-2	(2,0)	(0,-2)	1	
	d	$y = \frac{1}{2}x - 2$	0.5	-2	(4,0)	(0 ₁ -2)	0.5	
Graph #4	a	$y = -\frac{1}{2}x + 3$	-0.5	3	(6,0)	(0,3)	-0.5	
	b	y = -x + 3	-1	3	(3,0)	(0,3)	-1	
	c	y = -2x + 3	-2	3	(1.5,0)	(0,3)	-2	
	d	y = -4x + 3	- 4	3	(0.75, 0)	(9,3)	-4	

 $y = \mathbf{m}x + \mathbf{b}$

7. Which column of the Table of Results is identical to column #1? 5

What conclusions can you make from this observation about the meaning of **m** ?

the ís Slope. m

8. Which column of the Table of Results is identical to column #2? 4

What conclusions can you make from this observation about the meaning of ${\bf b}$?

<u>sint</u>. <u>γ</u>____

9. Fill in the chart.

		Equation	m	b	Slope	y-intercept
	а	y = 2x + 4	2	ч	2	(O,Y)
Ĩ4	b	y = 7x - 2	7	-2	7	(0 <mark>-</mark> 2)
	с	y = -3x - 1	-3	Ļ'	~ <u>~</u>)	(0,-1)
AR)	d	y = x - 3	1	-3	1	(0,-3)
	e	y = -x + 8	-1	8	-1	(0,8)
	f	y = 4x	4	0	4	(0,0)
\sim	g	<i>y</i> = 4	Ò	4	0	(0,4)
	h	y = -x	-1	0	-1	(0,0)
	i	y = -1	0	-1	0	(0,-1)
	j	y = x	1	Ø	1	(0p)