\qquad

TRIGONOMETRIC RATIOS

When dealing min th right $^{\text {th }}$ angled triangles, we often use the Gredk letters θ, +o 'represent the measure of unknown angle \qquad The hypotenuse is always the longest side, across from the right angle. The other two sides are named either ' $\frac{\text { opposite ' }}{\text { side }}$ ' ad'? $\frac{\text { scent' }}{\text { side }}$ depending on the location of θ.

LABEL

Exp. In $\triangle X Y Z$, identify the hypotenuse, adjacent side, and opposite side for \qquad

Ex2. In $\triangle X Y Z$, identify the hypotenuse, adjacent side, and opposite side for $\angle Z(\theta)$

X Hypotenuse: XZ

Adjacent: YZ
Opposite: XY

Ex. Label the hypotenuse (hyp), opposite (opp) and adjacent (adj) sides for marked angles.

3 PRIMARY TRIG RATIOS

Formulas for Right Triangle Trigonometry

$\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} \quad \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} \quad \tan \theta=\frac{\text { opposite }}{\text { adjacent }}$
where θ is the angle of reference
The formulas can be remembered by:
SOH
CAM
TA
\qquad

CASE 1A: DETERMINE THE RATIO FROM THE TRIANGLE SIDES

State the three primary trig ratios to four decimal places for the indicated angle:
$\sin \beta^{\circ}=\frac{O}{H}=\frac{12}{20}=0.6$

$$
\begin{aligned}
& \sin \theta^{\circ}=\frac{O}{H}=\frac{5}{13} \cong 0.3846 \\
& \cos \theta^{\circ}=\frac{A}{H}=\frac{12}{13}=0.9231 \\
& \tan \theta^{\circ}=\frac{O}{A}=\frac{5}{12}=0.4167
\end{aligned}
$$

$\tan \beta^{\circ}=\frac{O}{A}=\frac{12}{16}=0.75$

CASE 1b: DETERMINE THE RATIO FROM THE ANGLE (calculator must be in degree mode)
Determine the following ratios to four decimal places.

$$
\begin{array}{ll}
\sin 36^{\circ} \doteq 0.5878 & \cos 55^{\circ} \doteq 0.5736 \\
\tan 66^{\circ} \doteq 2.2460 & \tan 6^{\circ} \doteq 0.1051
\end{array}
$$

CASE 2: DETERMINE THE ANGLE

It is relatively straightforward to find the trig ratio knowing the angle, but what if we don't know the angle? We need the inverse (opposite) operation to find the angle.

