

The formulas can be remembered by:

SOH CAH TOA

ι

CASE 1A: DETERMINE THE RATIO FROM THE TRIANGLE SIDES

State the **three primary trig ratios** to four decimal places for the indicated angle:

CASE 1b: DETERMINE THE RATIO FROM THE ANGLE (calculator must be in degree mode)

Determine the following ratios to four decimal places. $\sin 36^\circ = 0.5878$ $\cos 55^\circ = 0.5736$ $\tan 6^\circ = 2.2469$ $\tan 6^\circ = 0.051$

CASE 2: DETERMINE THE ANGLE

It is relatively straightforward to find the trig ratio knowing the angle, but what if we don't know the angle? We need the *inverse* (opposite) operation to find the angle.

 \sim log $\cos \beta = 0.8660$ swap the ratio and the angle. tan COS sin $\cos^{-1} 0.8660 = \beta$ On the calculator press one of the following (depending on 13÷your brand of calculator): either '2ndF cos' or 'shift cos'. $\cos \alpha^{\circ} = 0.9952$ $\tan \beta^{\circ} = 11.4301$ ton'(11.4301) = B(B = 85) $c_{0.9952} = d$ $(d = 5.6^{\circ})$ $\sin \Omega^0 = 0.1788$ $\tan \theta^{\circ} = 1.1918$ ton'(1.1918)=0 $S_{10}^{-1}(0.1788) = \Omega$ $\Omega = 10.3$ Ø ≟ 50[°] $\cos \beta^{\circ} = 0.019$ $\sin \alpha^{\circ} = 0.9781$ $c_{\sigma s}'(0,019) = \beta$ sin' (0.9781) = a B= 88.9° α÷8δ

Page 362 # 1, 3, 4, 5, 6, 7, 8