Parent functions are the **simplest** functions in a family (a group of functions with similar characterics.)

1. Linear f(x) = x

X	f(x)
-3	-3
-2	-2
-1	-1
0	0
1	1
2	2
3	3

Domain	xeR!
	د ع
	u = Pl

Range (JUN)

Special Features:

- X Straight line that goes through origin

 - Slope is 1 -divides the Cartesian plane in half diagonally -grouph only in quadrants 1) and 3

2. Quadratic $f(x) = x^2$

X	f(x)
-3	$(-3)^{2}-9$
-2	$(-2)^2 = 4$
-1	$(-1)^2 = 1$
0	0
1	1
2	4
3	q

Domain_	(xer	

Range $\{y \in \mathbb{R} \mid y > 0\}$

Special Features:

- parabola that opens up
- vertex at the origin
- has a min
- "y" oxis is oxis of symmetry (a.o.s)
- graph only in quadrants (1) and (2)

3. Root $f(x) = \sqrt{x}$

X	f(x)
0	<u>0=0</u>
1	1=1
4	\(4= 2
9	9=3

Domain
$$\{x \in \mathbb{R} \mid x > 0\}$$

Range {yer y>o}

Special Features:

- the curve begins at the origin and rises in a concove downward Way
- the rate of rise is forever sloving although wever stopping to rise.
- graph only in quadrant 1
- min O, no max
- X -17+ = 0 -,y-int=0

1 | Page

4. Exponential $f(x) = 2^x$

X	f(x)	
-3	23=1/	8
-2	1/4	Ĭ
-1	1/2	
0	1	
1	2	
2	4	
3	8	

Domain_	x eR3	
Range	{yer	4>0}

An **asymptote** is a line that a graph gets closer and closer to, but never actually touches.

This graph has one asymptote. What is the equation of it?

regrares
$-y_{-int}=1$
- asymptote y=0 -groph in Dande
-groph in 1) and le
- growth

Footing.

5. Absolute Value f(x) = |x|

The absolute value sign, $| \cdot |$, means to take the value of the number and drop the negative signs. For example, the absolute value of -5 which is written as |-5| is 5.

X	f(x)
-3	1-31=3
-2	2
-1	1
0	0
1	1
2	2
3	3

Domain {x←R}
Range $\{y \in \mathbb{R} \mid y \geqslant 0\}$
-graph in Dand 2 -hos a min O
- has a min U
- symmetric about X=0 - X-int =(0,0)
- x - int = (0,0)
- y-in+ (0,0)
- Vertex (0,0)

6. Reciprocal $f(x) = \frac{1}{x}$

f(x)
1/3
1/2
1 4
2
3

*Leave your y values

as fractions

Domain_	{x∈R	x#º	3
Range	Eyer1	<u>440</u>	3

This graph has two asymptotes. What are their equations?

y=0
x=0

trotures
- hyperbola
- no max
no min
- symmetrical
- graph Dont