THINK ABOUT IT: Determine the value of x if the area of the triangle below is $48 \mathrm{~m}^{2}$.

REARRANGING FORMULAS - Teacher directed
A formula is a mathematical relationship between different quantities that is expressed with algebra. For example, one formula for speed is distance divided by time, which we express like:

$$
t_{\times s}=\frac{d}{t} \times t
$$

In this case, we say s (speed) is the subject of the formula because s is isolated on one side of the equation and does not appear at all on the other. We can change the subject__ of the formula, for example by multiplying both sides by t. The equation becomes:

$$
s \times t=d
$$

Now, d is isolated and becomes the subject . This is called rearranging formulas.

1) Rearrange the following formulas to make b the subject: \Rightarrow isolate \backslash solve for $b \Rightarrow$ Follow SAMDEB

2) Rearrange the following formulas for the indicated variable: fractions, variable in numerator

3) Isolate for the indicated variable:

4) Rearrange the following formulas for the indicated variable:

5) Rearrange the following formulas for the indicated variable:

6) $V=\pi r^{2} h$ is the formula used to calculate the volume of a cylinder.

PRACTICE

1. Rearrange the following formulas for the indicated variable

$\begin{aligned} & \frac{C}{2 \pi}=\frac{2 \pi r}{2 \pi} \\ & \frac{c}{2 \pi}=r \\ & r=\frac{c}{2 \pi} \end{aligned}$	solve for r * diuble by 2π		$\begin{aligned} & \sqrt{A=\sqrt{s^{2}}} \\ & \sqrt{A}=s \\ & s=\sqrt{A} \end{aligned}$	solve for s * sq root both sides
$\begin{aligned} & \frac{I}{P_{r}}=\frac{P r t}{P r} \\ & \frac{I}{P_{r}}=t \\ & t=\frac{I}{P_{r}} \end{aligned}$	solve for t * Civide both sides by P then r	$\begin{array}{cc} x^{2}+y^{2}=r^{2} & \text { solve for } x \\ -y^{2}-y^{2} * & \text { subtract } y^{2} \\ \sqrt{x^{2}}=\sqrt{r^{2}-y^{2}} \quad & \text { from both sidde } \\ & \text { sq root both } \\ x=\sqrt{r^{2}-y^{2}} \quad \text { sibles } \end{array}$	$\left\{\begin{array}{l} I^{2} \cdot R=\frac{P}{I^{2}} \cdot I^{2} \\ \frac{T^{2} \cdot R}{R}=\frac{P}{R} \\ \sqrt{I^{2}}=\sqrt{\frac{P}{R}} \\ I=\sqrt{\frac{P}{R}} \end{array}\right.$	solve for I *multiply both siblej by I^{2} * Livide beth sibles by R * sq root both

2. Rearrange the following formulas for the indicated variables, then evaluate for the given values for each variable.

3. Rearrange then evaluate.
a) It is not safe for an adult to surpass her or his maximum heart rate. This maximum heart rate, M , in beats per minute (bpm), is modeled by the equation $\mathrm{M}=230-1.2 \mathrm{~A}$, where A is the age of the adult in years.

Rearrange to solve for A.

$$
\begin{aligned}
& M=230-1.2 A \\
&-230-230 \\
& \frac{M-230}{-1.2}=\frac{-1.2 A}{-1.2} \\
& \frac{M-230}{-1.2}=A \\
& A=\frac{M-230}{-1.2}
\end{aligned}
$$

At what age should a person's maximum exercising heart rate be 194 bpm ?

$$
\begin{aligned}
A & =\frac{M-230}{-1.2} \quad \text { sub } 194 \text { for } M \\
& =\frac{194-230}{-1.2} \quad \therefore \text { At age of } 30 . \\
& =\frac{-36}{-1.2} \\
& =30
\end{aligned}
$$

b) The cost, C , in dollars, of producing a school yearbook is given by the formula $\mathrm{C}=\mathrm{S}+4 \mathrm{n}$, where S is the setup cost, and n is the number of yearbooks printed.

Solve the formula for n .

$$
\begin{gathered}
C=S+4 n \\
-5-5 \\
\frac{C-S}{4}=\frac{4 n}{4} \\
\frac{C-S}{4}=n
\end{gathered}
$$

If the set-up cost is $\$ 925$, how many yearbooks can be printed? If $S=\$ 1500$?

$$
\begin{aligned}
n & =\frac{C-S}{4} \\
& =\frac{1500-925}{4} \\
& =143.75
\end{aligned}
$$

$\therefore 143$ books con be printed.
c) The area, A , of a circle with radius r is given by $\mathrm{A}=\pi \mathrm{r}^{2}$.

Solve the formula for r.
Determine the radius of a circular oil spill that covers an area of $5.0 \mathrm{~km}^{2}$

$$
\begin{aligned}
& r=\sqrt{\frac{A}{\pi}} \quad \text { sub } 5 \text { for } A \\
& r=\sqrt{\frac{5}{\pi}} \quad \therefore \text { The radius is approximately } 1.26 \mathrm{~km} . \\
& r \cong 1.26
\end{aligned}
$$

d) You can convert Fahrenheit to Celsius using the following formula

Solve the formula for F .
What is $35^{\circ} \mathrm{C}$ converted to ${ }^{\circ} \mathrm{F}$?

$$
\begin{aligned}
& 9 \cdot C=\frac{5(F-32)}{9} \cdot 9 \\
& 9 C=5(F-32) \\
& 9 C=5 F-32 \\
& +32 \\
& +32 \\
& \begin{array}{c}
9 C+32 \\
9
\end{array}=\frac{5 F}{5} \\
& \frac{9 C+32}{5}=F
\end{aligned}
$$

$$
\begin{aligned}
F & =\frac{9 C+32}{5} \quad \text { sub } 35 \text { to } C \\
& =\frac{9(35)+32}{5} \quad \therefore \text { It's } 69.4^{\circ} \mathrm{F} \text { degrees. } \\
& =\frac{347}{5} \\
F & =69.4
\end{aligned}
$$

