Shortest Distance from a Point to a Line

- Given the point we can draw infinite different lines to the line but...
- The shortest distance is the line that hits it at a \$0.
- The shortest distance from a point to a line is the Pe/pendicyla distance from the point to your line.

METHOD 1: Finding the Shortest Distance Graphically
Ext. Find the shortest distance graphically between the point $(-4,-3)$ and the equation $y=-2 x+4$.

ME THOD 2: Finding the Shortest Distance Algebraically
$E \times 2$. Find the shortest distance from the point $C(4,-2)$ to the line passing through the points $A(1,3)$ and $B(-4,-2)$.
Step 1 Find equation of the line $A B$.
Step 2 Draw a line perpendicular to $A B$ that goes through C. Let the point on $A B$ be called D. Find the equation of the line CD.
Step 3 Find D, the $P O 1$ of $A B$ and $C D$ (substitution or elimination).
Step 4 Find the length of $C D$.

Step) : Equation $\overline{A B}$
1 Step 2: Equation of $\overline{C D}$: Step 3: Find POID (x, y) | Stept: Shortest

$$
\begin{aligned}
& \text { (2) } y=-x+2 \\
& \text { sub (1) } \rightarrow \sqrt{2} \\
& x+2=-x+2
\end{aligned}
$$

$$
x+x=2-2
$$

$$
\begin{aligned}
x+x & =2-2 \\
\frac{2 x}{2} & =\frac{0}{2}, \begin{array}{l}
y=x+2 \\
y=0+2 \\
x
\end{array}, \begin{array}{l}
y=2
\end{array}, ~
\end{aligned}
$$

$$
P O I \Rightarrow D(0,2)
$$

$$
\begin{aligned}
& 1 C(4,-2) D(0,2) \\
& \overline{C D}=\sqrt{(4-0)^{2}+(-2-2)^{2}} \\
& 1=\sqrt{(4)^{2}+(-4)^{2}} \\
& 1=\sqrt{16+16} \\
& 1=\sqrt{32} \\
&=\sqrt{16 \cdot 2} \\
&=\sqrt{16} \cdot \sqrt{2} \\
&=4 \sqrt{2}
\end{aligned}
$$

\therefore The shortest distance from C to $\overline{A B}$ is $\sqrt{32}$ or $4 \sqrt{2}$

$$
\begin{aligned}
& A(1,3) \quad B(-4,-2) \\
& m_{A B}=\frac{3-(-2)}{1-(-4)}=\frac{3+2}{1+4}=\frac{5}{5}, m_{C D}=-1 \quad c(4,-2), \quad y=x+2 \\
& y=m(x-p)+q \\
& m_{A B}=1 \quad A(1,3) \\
& y=m(x-\rho)+q \\
& y=1(x-1)+3 \\
& 1 y=-(x-4)+(-2) \\
& \text { 1 } y=-x+4-2 \\
& \text { (2) } y=-x+2 \\
& \begin{array}{lll}
A(1,3) B(-4,-2) & \\
m_{A B}=\frac{3-(-2)}{1-(-4)}=\frac{3+2}{1+4}=\frac{5}{5}, & m_{C D}=-1 \quad c(4,-2) \\
m_{A B}=1 & A(1,3) & , y=-(x-p)+9 \\
y=m(x-\rho)+9 & , y=-x+4-2, \\
y=1(x-1)+3 & , y=-x+2, \\
y=x-1+3 & , & \\
y=x+2 & &
\end{array}
\end{aligned}
$$

Practice
Ex. Determine the shortest distance graphically from $A(3,-1)$ to the line $2 x-y+3=0$.
Step: Rearrange $2 x-y+3=0$

$$
\begin{array}{rl}
2 x+3 & =y \\
y & =2 x+3 \\
2=2 & y \text {-int }
\end{array}
$$

Step: Slope of shortest distance

Ext: Algebraically determine the shortest distance from the point $P(5,2)$ to the line passing through the points $=\sqrt{4.5}$ $R(-6,4)$ and $S(-2,-4)$.
Step 1: Equation of $\overline{R S}$

$$
\begin{aligned}
& m_{R S}=\frac{-4-4}{-2-(-6)}=\frac{-8}{-2+6}=\frac{-8}{4}=-2 \\
& m_{R S}=-2
\end{aligned}\left\{\begin{array}{l}
y=m(x-p)+q \\
y=-2[x-(-2)]+(-4)
\end{array}\right.
$$

Step 2: Equation of PT

$$
\begin{aligned}
& m_{p T}=\frac{1}{2} \\
& y=m(x-p)+0 \\
& y=1 \\
& y=0.5(x-5)+2 \\
& y=0.5 x-2.5+2
\end{aligned}
$$

(2) $y=0.5 x-0.5$

$$
m=-2 \quad S(-2,-4)
$$

$$
y=-2(x+2)-4
$$

$$
9 \begin{aligned}
& y=-2 x-4-4 \\
& y=-2 x-8
\end{aligned}
$$

Step 3: Finding POI

$$
-2 x-8=0.5 x-0.5
$$

Step 4: Finding sod

$$
-8+0.5=0.5 x+2 x
$$

$$
\begin{array}{r}
\frac{-7.5}{2.5}=\frac{2.5 x}{2.5} \\
x=-3
\end{array}\left\{\begin{array}{l}
y=-2(-3)-8 \\
y=6-8 \\
y=-2
\end{array}\right.
$$

$$
\begin{align*}
& \overline{P T}=\sqrt{(-3-5)^{2}+(-2-2)^{2}} \tag{Sub}\\
&=\sqrt{64+16} \\
&=\sqrt{80} \\
&=4 \sqrt{5} \\
& \therefore \text { The shore } 3 \text { of } 4 \\
& \therefore \text { distance 4 ry }
\end{align*}
$$

Ex5.Triangle $A B C$ has vertices $A(3,4), B(-5,2)$, and $C(1,-4)$. Determine an equation for $A E$, the altitude from A to $B C$. What is the area of triangle $A B C$?

An altitude of a triangle is the shortest distance from A to $\overline{B C} \quad A(3,4)$
We need to create a linear system so that we can find the POI which is $D(x, y)$
Steel: Determine the equation of $\widehat{B C}$

$$
\begin{array}{ll}
m_{x}=\frac{-4-2}{1-(-5)}=\frac{-6}{6}=-1 \quad m_{B C}=-1 \\
y=m(x-p)+9 & (1,-4) \\
& =-1(x-1)-4 \\
=-x+1-4 & \text { (1) } y=-x-3
\end{array}
$$

$$
\underbrace{\substack{D(x, y) \\ B(-\overline{5}, 2)}}_{D(x, y)} \underset{\substack{-\dot{A}(3,-4)}}{\leftarrow}
$$

Steen: Determine the equation of $\overline{A D}$

$$
\begin{align*}
& m_{A D}=1 \quad A(3,4) \\
& y=m(x-p)+9 \tag{2}\\
& =1(x-3)+4
\end{align*}
$$

Steps: Find PO

$$
\begin{aligned}
& \text { sub } 1 \text { into (2) } \\
& -x-3=x+1 \\
& -4=2 x \\
& -2=x
\end{aligned}
$$

Step: Calculate the length of Shortest distance $A(3,4)$ and $D(-2,-1)$

$$
\begin{aligned}
d & =\sqrt{(-2-3)^{2}+(-1-4)^{2}} \\
& =\sqrt{25+25} \\
& =\sqrt{50} \\
& =5 \sqrt{2}
\end{aligned}
$$

$$
B(-5,2) \quad C(1,-4)
$$

Step 5: Calculate the length of $\stackrel{\rightharpoonup}{B C}$

$$
\begin{aligned}
d & =\sqrt{(-5-1)^{2}+\left(2-(-4)^{2}\right.} \\
& =\sqrt{36+36} \\
& =\sqrt{72} \\
& =6 \sqrt{2}
\end{aligned}
$$

Step: Area $=\frac{b \cdot h}{2}=\frac{6 \sqrt{2} \cdot 5 \sqrt{2}}{2}$

$$
=30
$$

\therefore The area is 30

