THE METHOD OF SUBSTITUTION

1. Choose an equation and isolate one variable (* pick the easiest one!).
2. Substitute one equation into the other (Sub © in (2).
3. Solve the new equation for the other variable.
4. Substitute that result $(x=\#)$ into one of the original equations.
5. Check your solution in both original equations.

Example 1
Solve the linear system using the method of substitution.
(1) $y=2 x+4$
$3 x+y=9$
Sub what represents y in equation (1) into where you see " y " in equation (2)
(1) $y=2 x+4$

Step 3
Sub "1" for " x " in equation (1)
(2) $3 x+y=9$ replace " y " with $2 x+4$
(1) $y=2 x+4$

$$
\begin{aligned}
\underline{3 x}+2 x+4 & =9 \\
5 x+4^{-4} & =9^{-4} \\
\frac{5 x}{5} & =\frac{5}{5} \\
x & =1
\end{aligned}
$$

$5+e^{2}$

$$
y=2(1)+4
$$

$$
y=6
$$

$$
\therefore \quad \text { P.O. } I=(1,6)
$$

Example 2
Solve the linear system using the method of substitution.
(1) $2 y-4 x=2$
(2) $y=-x+4$

Sub (2) into (1)

Example 3
Solve the linear system using the method of substitution.

$$
\begin{aligned}
& \text { () } 2 x+y=7 \\
& \text { (2) } x-y=-1
\end{aligned}
$$

1) Rearrange (2) into $y=m x+b$

$$
\begin{aligned}
& x-y=-1 \\
& \frac{-y}{-1}=\frac{-x}{-1} \frac{-1}{-1} \\
& y=x+1
\end{aligned}
$$

(1) $2 x+y=7$
(2) $y=x+1$
$\begin{aligned} & 2 x+(x+1)=7 \\ &-1\end{aligned}$ sub" 2 " for "x" in equation (2)

$$
\begin{aligned}
& \operatorname{sub}(2 \sin (1) \frac{3 x}{3}=\frac{6}{3} \\
& \frac{x}{x}=2
\end{aligned}
$$

$$
y=x+1
$$

$$
=2+1
$$

$$
y=3
$$

$$
\therefore \text { POI is }(2,3)
$$

\therefore The solution is $(2,3)$

Example 4
Solve the linear system using the method of substitution.

$$
\text { (1) } 2 x-y=4
$$

i) Rearrange (1) into $y=m x+b$

$$
\begin{aligned}
2 x-y^{-2 x} & =4^{-2 x} \\
-y & =\frac{-2 x}{-1} \frac{4}{-1} \\
y & =2 x-4
\end{aligned}
$$

(1) $y=2 x-4$
sub " $\frac{13 \text { " }}{6}$ for " x "
(2) $\left.\begin{array}{rlrl}4 x+y=9 & \Rightarrow & 6 x-4^{+4} & =9^{+4} \\ \text { sub } \\ \text { (1) } \rightarrow 2\end{array}\right) ~ \frac{6 x}{6}=\frac{13}{6}$ \Rightarrow

$$
x=\frac{13}{6}
$$

\therefore The solution is $\left(\frac{13}{6}, \frac{1}{3}\right)$

$$
\text { (1) } \begin{aligned}
y & =2 x-4 \\
& =2 \cdot\left(\frac{13}{36}\right)-4 \\
& =\frac{13}{3}-\frac{4 \cdot 3}{1 \cdot 3} \\
& =\frac{13}{3}-\frac{12}{3} \\
& =\frac{13-12}{3}
\end{aligned}
$$

y	$2 x-4$
$\frac{1}{3}$	$2\left(\frac{13}{6}\right)-4$
	$\frac{13}{3}-4$
	$\frac{1}{3}$

$L S=85 V$

$2 x+y$	9
$2\left(\frac{13}{83}\right)+\frac{1}{3}$	9
$\frac{26}{3}+\frac{1}{3}$	
$\frac{27}{3}$	9
9	
LS	9 SN $^{9} V$

PRACTICE

$\begin{aligned} & \text { 1. (1) } y=2 x+1 \\ & \begin{aligned} \text { (2) } y & =-3 x-11 \\ 2 x+3 x & =-3 x-11^{-3 x} \\ 5 x+1^{-1} & =-11^{-1} \\ \frac{5 x}{5} & =\frac{-12}{5} \\ \frac{x}{x} & =\frac{-12}{5} \end{aligned} \quad \begin{aligned} & y=2 x+1 \\ &=2\left(\frac{-12}{5}\right)+1 \\ &=\frac{-24}{5}+\frac{1.5}{15} \\ &=\frac{-24+5}{5} \\ & y=\frac{-19}{5} \end{aligned} \\ & \therefore\left(\frac{-12}{5}, \frac{-19}{5}\right) \end{aligned}$	2. (1) $\mathrm{y}=5 \mathrm{x}-2$ (2) $6 x+3 y=36$ $\begin{aligned} &(1) \rightarrow(2) \\ & 6 x+3(5 x-2)=36 \\ & 6 x+15 x-6=36 \\ & 21 x-6^{+6}=36 \\ & \frac{21 x}{21}=\frac{42}{21} \\ & x=2 \end{aligned} \quad \begin{aligned} & y=5 x-2 \\ &=5(2)-2 \\ &=10-2 \\ & y=8 \\ & \therefore \text { PO1 is } \\ &(2,8) \end{aligned}$
3. (1) $2 x+y=3$ (2) $-3 x+y=-7$ Rearrange (1) into $y=m x+b$ $\begin{aligned} & \text { (1) } y=-2 x+3 \\ & \text { (2) }-3 x+y=-7 \\ &-3 x+(-2 x+3)=-7 \\ &-3 x-2 x+3=-7 \\ &-5 x+3^{-3}=-7 \\ & \frac{-5 x}{5}=\frac{-10}{5} \end{aligned} \quad \therefore \begin{aligned} & y=-2 x+3 \\ & y=-2(2)+3 \\ & y=-4+3 \\ & y=-1 \end{aligned}$	$\text { 4. } \begin{array}{rl} 2 x+y & =-1 \\ x-13 y & =13 \\ x-13(-2 x-1) & =13 \\ x+26 x+13 & =13 \\ 27 x+13^{-13} & =13^{-13} \\ \frac{27 x}{27} & =\frac{0}{27} \\ x & y=0 \\ y=-2 x-1 \\ 701 & \text { is }(0,-1) \end{array}$
Need to rearrange for $\mathrm{x}=$ and substitute x first instead of y . 5. $\left.\left.\begin{array}{r} 2 x+5 y=-18 \rightarrow 2 x+5 y=-18 \\ x+2 y=-6 \rightarrow x=-2 y-6 \end{array}\right\} \begin{array}{rl} 2(-2 y-6)+5 y & =-18 \\ -4 y-12+5 y & =-18 \\ -12+12 \\ y & =-18^{+12} \\ y=-6 \end{array}\right] \begin{aligned} & x=-2(-6)-6 \\ & =12-6 \\ & x=6 \end{aligned}$	
ANSWERS: 1. (-12/5, -19/5), 2. (2, 8), 3. (2,	4. $(0,-1), 5 .(6,-6)$

